-
内容大纲
本书系统讲解拓扑学理论知识。在美国大学作为教材近20年,最近由原作者进行了全面更新。第一部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。
本书最大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。 -
作者介绍
James R.Munkres,麻省理工学院数学系教授。除本书外,他还著有《Analysis On Manifolds》、《Elernentary Differential Topology》等书。 -
目录
译者序
前言
告读者
第一部分 一般拓扑学
第1章 集合论与逻辑
1 基本概念
2 函数
3 关系
4 整数与实数
5 笛卡儿积
6 有限集
7 可数集与不可数集
8 归纳定义原理
9 无限集与选择公理
10 良序集
11 极大原理
附加习题:良序
第2章 拓扑空间与连续函数
12 拓扑空间
13 拓扑的基
14 序拓扑
15 X×Y上的积拓扑
16 子空间拓扑
17 闭集与极限点
18 连续函数
19 积拓扑
20 度量拓扑
21 度量拓扑(续)
22 商拓扑
附加习题:拓扑群
第3章 连通性与紧致性
23 连通空间
24 实直线上的连通子空间
25 分支与局部连通性
26 紧致空间
27 实直线上的紧致子空间
28 极限点紧致性
29 局部紧致性
附加习题:网
第4章 可数性公理和分离公理
30 可数性公理
31 分离公理
32 正规空间
33 Urysohn引理
34 Llrysohn度量化定理
35 Tietze扩张定理
36 流形的嵌入
附加习题:基本内容复习
第5章 Tychonoff定理
37Tychonoff定理
38Stone-Cech紧致化
第6章 度量化定理与仿紧致性
39 局部有限性
40 Nagata-Smirnov度量化定理
41 仿紧致性
42 Smirnov度量化定理
第7章 完备度量空间与函数空间
43 完备度量空间
44 充满空间的曲线
45 度量空间中的紧致性
46 点态收敛和紧致收敛
47 Ascoli定理
第8章 Baire空间和维数论
48 Baire空间
49 一个无处可微函数
50 维数论导引
附加习题:局部欧氏空间
第二部分 代数拓扑学
第9章 基本群
51 道路同伦
52 基本群
53 覆叠空间
54 圆周的基本群
55 收缩和不动点
56 代数基本定理
57 Borsuk-Ulam定理
58 形变收缩核和伦型
59 Sn的基本群
60 某些曲面的基本群
第10章 平面分割定理
61 Jordan分割定理
62 区域不变性
63 Jordan曲线定理
64 在平面中嵌入图
65 简单闭曲线的环绕数
66 Cauchy积分公式
第11章 Seifert-vanKampen定理
67 阿贝尔群的直和
68 群的自由积
69 自由群
70 Seifert-van:Kampen定理
71圆 周束的基本群
72 黏贴2维胞腔
73 环面和小丑帽的基本群
第12章 曲面分类
74 曲面的基本群
75 曲面的同调
76 切割与黏合
77 分类定理
78 紧致曲面的构造
第13章 覆叠空间分类
79 覆叠空间的等价
80 万有覆叠空间
81 覆叠变换
82 覆叠空间的存在性
附加习题:拓扑性质与π1
第14章 在群论中的应用
83 图的覆叠空间
84 图的基本群
85 自由群的子群
参考文献
索引
同类热销排行榜
- 目送/人生三书
-
21世纪的《背影》 + 感人至深的“生死笔记”+ 龙应台亲手摄影 + 跨三代共读的人生之书!
华人世界率性犀利的一枝笔,龙应台独家...
- 顾城的诗(金版)(精)/蓝星诗库
- 人类群星闪耀时(插图本)/译林名著精选
- 牛津高阶英汉双解词典(附光盘第8版)(精)
- 文化苦旅(新版)
- 摆渡人
- 解忧杂货店(精)
- 骆驼祥子
- 曾国藩(又笨又慢平天下)
- 查令十字街84号(珍藏版)(精)
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
