濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁惧墽绮换娑㈠箣閻戝棛鍔┑鐐村灦閻燂箓宕曢悢鍏肩厪濠电偛鐏濋崝姘舵煟鎼搭喖寮慨濠冩そ瀹曟鎳栭埞鍨沪闂備礁鎼幊蹇曞垝瀹€鍕仼闁绘垼妫勯拑鐔兼煏婢舵稓鐣遍柍褜鍓涢弫濠氬蓟閵娿儮鏀介柛鈩冧緱閳ь剚顨婇弻锛勨偓锝庡亞閵嗘帞绱掓潏銊ユ诞闁糕斁鍋撳銈嗗笒鐎氼剛澹曢崗鍏煎弿婵☆垰鐏濇禍褰掓煕閻愬灚鏆柡宀嬬秮閹晠鎮滃Ο绯曞亾閸愵喗鍋i柍褜鍓熼弫鍐焵椤掆偓瀹撳嫰姊洪崨濠勨槈閺嬵亜霉濠婂嫮鐭掗柡灞诲姂瀵潙螖閳ь剚绂嶆ィ鍐╁€垫繛鍫濈仢閺嬫稑顭胯闁帮綁鐛幋锕€顫呴柣姗嗗亝閺傗偓闂佽鍑界紞鍡樼鐠烘í缂氬┑鐘叉处閳锋垹绱撴担鍏夋(妞ゅ繐瀚烽崵鏇㈡偣閾忚纾柟鐑橆殔缁犳盯鏌eΔ鈧悧鍐箯濞差亝鈷掗柛灞炬皑婢ф稓绱掔€n偄娴鐐寸墵楠炲洭顢橀悩娈垮晭闁诲海鎳撴竟濠囧窗閺嶎厾宓侀柡宥庡幗閻撶喖鏌ㄥ┑鍡樺櫣婵¤尙绮妵鍕敃閿濆洨鐣奸梺鍦嚀鐎氫即骞栬ぐ鎺撳仭闁哄娉曢鍥⒒閸屾艾鈧娆㈠璺虹劦妞ゆ帒鍊告禒婊堟煠濞茶鐏¢柡鍛板煐鐎佃偐鈧稒岣块崢鐐繆閵堝繒鐣虫繛澶嬫礈閼洪亶宕稿Δ浣哄帾闂佹悶鍎崝灞炬叏瀹ュ棭娈介柣鎰綑濞搭喗顨ラ悙宸剶闁诡喗绮撳畷鍗烆潨閸℃﹫绱欓梻鍌氬€搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儺鍓﹂弫宥夋煟閹邦厽缍戦柍褜鍓濋崺鏍崲濠靛顥堟繛鎴炶壘椤e搫顪冮妶鍐ㄥ姕鐎光偓閹间礁钃熸繛鎴旀噰閳ь剨绠撻獮瀣攽閸モ晙绨┑鐘殿暯閸撴繆銇愰崘顔藉亱闁规崘顕ч拑鐔兼煥閻斿搫孝缂佲偓閸愵喗鐓冮柛婵嗗閳ь剚鎮傚鍐参旈崨顔规嫼婵炴潙鍚嬮悷褏绮旈鈧湁婵犲﹤楠告晶鐗堜繆閸欏濮嶆鐐村笒铻栭柍褜鍓氶崕顐︽煟閻斿摜鐭婇梺甯到椤曪綁骞庨挊澶屽幐闂佸憡鍔︽禍鐐烘晬濠婂牊鐓涘璺猴功婢ф垿鏌涢弬璺ㄐч挊鐔兼煕椤愮姴鍔滈柣鎾寸☉闇夐柨婵嗙墱濞兼劗鈧娲栭惌鍌炲蓟閳╁啯濯撮悷娆忓绾炬娊姊烘潪鎵妽闁圭懓娲顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷 [闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帊绀侀崜顓烆渻閵堝棗濮х紒鐘冲灴閻涱噣濮€閵堝棛鍘撻柡澶屽仦婢瑰棝宕濆鍡愪簻闁哄倸鐏濋顐ょ磼鏉堛劍宕岀€规洘甯掗~婵嬵敄閽樺澹曢梺鍛婄缚閸庢娊鎯屽▎鎾寸厱闁哄洢鍔岄悘鐘电磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑鍠棃宕橀妸銉т喊闂備礁鎼崯顐︽偋婵犲洤纾瑰┑鐘崇閻撱垺淇婇娆掝劅婵″弶鎮傞弻锝嗘償椤旂厧绫嶅┑顔硷龚濞咃絿鍒掑▎鎾崇閹兼番鍨虹€氭娊姊绘担铏广€婇柡鍛洴瀹曨垶寮堕幋顓炴闂佸綊妫跨粈渚€宕橀埀顒€顪冮妶鍡樺暗闁哥姵鎹囧畷銏ゎ敂閸涱垳鐦堥梺姹囧灲濞佳勭濠婂牊鐓熼煫鍥ㄦ⒒缁犵偟鈧娲樼换鍌烇綖濠靛鍤嬮柣銏ゆ涧楠炴劙姊绘担鍛靛綊寮甸鍕┾偓鍐川椤旂虎娲搁梺璺ㄥ櫐閹凤拷]

    • 拓扑流形引论(第2版)(英文版)
      • 作者:(美)约翰·M.李|责编:刘慧
      • 出版社:世界图书出版公司
      • ISBN:9787519276089
      • 出版日期:2020/07/01
      • 页数:433
    • 售价:47.6
  • 内容大纲

        本书作者是美国华盛顿大学教授,具有丰富的教学经验,他在华盛顿大学和哈佛大学教授流形课程已有15年之久。书中论述了流形理论中所需的拓扑学基本概念,特别是微分几何、代数几何和相关领域。线和曲面;同伦和基本群论;圆和球;群论;Seifert-Van Kampen定理;覆盖空间;覆盖类别;同调。
  • 作者介绍

  • 目录

    Preface
    1  Introduction
      What Are Manifolds
      Why Study Manifolds
    2  Topological Spaces
      Topologies
      Convergence and Continuity
      Hausdorff Spaces
      Bases and Countability
      Manifolds
      Problems
    3  New Spaces from Old
      Subspaces
      Product Spaces
      Disjoint Union Spaces
      Quotient Spaces
      Adjunction Spaces
      Topological Groups and Group Actions
      Problems
    4  Connectedness and Compactness
      Connectedness
      Compactness
      Local Compactness
      Paracompactness
      Proper Maps
      Problems
    5  Cell Complexes
      Cell Complexes and CW Complexes
      Topological Properties of Cw Complexes
      Classification of 1-Dimensional Manifold
      Simplicial Complexes
      Problems
    6  Compact Surfaces
      Surfaces
      Connected Sums of Surfaces
      Polygonal Presentations of Surfaces
      The Classification Theorem
      The Euler Characteristic
      Orientability
      Problems
    7  Homotopy and the Fundamental Group
      Homotopy
      The Fundamental Group
      Homomorphisms Induced by Continuous Maps
      Homotopy Equivalence
      Higher Homotopy Groups
      Categories and Functors
      Problems
    8  The Circle
      Lifting Properties of the Circle

      The Fundamental Group of the Circle
      Degree Theory for the Circle
      Problems
    9  Some Group Theory
      Free Products
      Free Groups
      Presentations of Groups
      Free Abelian Groups
      Problems
    10  The Seifert-Van Kampen Theorem
      Statement of the Theorem
      Applications
      Fundamental Groups of Compact Surfaces
      Proof of the Seifert-Van Kampen Theorem
      Problems
    11  Covering Maps
      Definitions and Basic Properties
      The General Lifting Problem
      The Monodromy Action
      Covering Homomorphisms
      The Universal Covering Space
      Problems
    12  Group Actions and Covering Maps
      The Automorphism Group of a Covering
      Ouotients by Group Actions
      The Classification Theorem
      Proper Group Actions
      Problems
    13  Homology
      Singular Homology Groups
      Homotopy Invariance
      Homology and the Fundamental Grour
      The Mayer-Vietoris Theorem
      Homology of Spheres
      Homology of CW Complexes
      Cohomology
      Problems
    Appendix A: Review of Set Theory
      Basic Concepts
      Cartesian Products,Relations,and Functions
      Number Systems and Cardinality
      Indexed Families
    Appendix B: Review of Metric Spaces
      Euclidean Spaces
      Metrics
      Continuity and Convergence
    Appendix C: Review of Group Theory
      Basic Definitions
      Cosets and Quotient Groups
      Cyclic Groups

    References
    Notation Index
    Subject Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>