濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴烆焸濞戞瑦鍎熼柕濞垮劚閻庮參姊洪崗鑲┿偞闁哄懏绮岄悾鐑藉蓟閵夛箑鈧敻鏌ㄥ┑鍡涱€楅柡瀣〒缁辨帡鍩€椤掑嫬纾兼慨妯垮亹閸炵敻鏌i悩鐑樸€冮悹鈧敃鈧嵄闁告稑枪娴滄粓鏌ㄩ弴妤€浜鹃悗娈垮枛婢у酣骞戦姀鐘斀閻庯綆浜跺ḿ濠囨⒑缂佹◤顏勵嚕鐠虹洅鎺楀箛閻楀牃鎷洪梻鍌氱墛缁嬫帡骞栭幇顓犵鐎瑰壊鍠栭獮鏍煟閿濆懎妲绘い顐g箘閹瑰嫰鎼归悷鏉跨闂傚倷绶氶埀顒傚仜閼活垱鏅舵导瀛樼厾濡わ箒娉曠花鍧楁煏閸ャ劌濮嶆鐐村浮楠炲鎮滈崱姗嗘(闂傚倸鍊风粈渚€骞栭位鍥敍閻愭潙鈧埖绻濋棃娑氬妞ゃ儲宀搁弻娑⑩€﹂幋婵囩亐濠碘剝褰冮悧鎾诲蓟閿熺姴绀冮柍鍝勫€搁弳妤呮⒑娴兼瑧绉ù婊庡墰濡叉劙骞掑Δ鈧儫閻熸粌閰e鎶藉煛閸愵亞锛滈柡澶婄墑閸斿秹藟閸儲鐓涘ù锝堫潐瀹曞矂鏌℃担瑙勫磳闁轰焦鎹囬弫鎾绘晸閿燂拷 [闂傚倸鍊搁崐宄懊归崶顒佸剭妞ゆ劧绠戦獮銏ゆ煃鏉炴壆鍔嶆い鏂垮缁辨捇宕掑顑藉亾閸濄儳鐭欓柛鏇ㄥ灠缁狀垶鏌ㄩ悤鍌涘 | 闂傚倸鍊搁崐鐑芥嚄閼哥數浠氱紓鍌欒兌缁垶宕濆Δ鍐ㄥ灊闁哄啫鐗婇崐濠氭煢濡警妲搁柣搴弮濮婅櫣绮欓幐搴㈡嫳闂佺硶鏅涢崯鏉戭嚕閹间礁鍐€妞ゆ挾鍠撻崢顏呯節閻㈤潧浠滈柣蹇旂箞瀹曟繂顫濋懜鐢靛幐闂佺ǹ鏈〃鍛閿燂拷]

    • 经典傅里叶分析(第3版)(英文版)
      • 作者:(美)L.格拉法克斯|责编:刘慧//高蓉
      • 出版社:世界图书出版公司
      • ISBN:9787519226084
      • 出版日期:2017/08/01
      • 页数:638
    • 售价:43.6
  • 内容大纲

        本书作品旨在为读者提供学习欧几里得调和解析领域的理论基础,各章有习题及提示。
        本书原始版本是以单卷集发布的,但是由于其体积、范围和新材料的增加,第2版改为两卷集发行,新增时频分析和Carleson-Hunt定理等内容。
        第3版在第2版的基础上修订新增一些章节,并将加权不等式一章从《现代傅里叶分析》调整到《经典傅里叶分析》,新增若干实例和应用内容,以及一些习题和提示。
  • 作者介绍

  • 目录

    1  Lp Spaces and Interpolation
      1.1  Lp and Weak Lp
        1.1.1  The Distribution Function
        1.1.2  Convergence in Measure
        1.1.3  A First Glimpse at Interpolation
        Exercises
      1.2  Convolution and Approximate Identities
        1.2.1  Examples of Topological Groups
        1.2.2  Convolution
        1.2.3  Basic Convolution Inequalities
        1.2.4  Approximate Identities
        Exercises
      1.3  Interpolation
        1.3.1  Real Method: The Marcinkiewicz Interpolation Theorem
        1.3.2  Complex Method: The Riesz-Thorin Interpolation Theorem
        1.3.3  Interpolation of Analytic Families of Operators
        Exercises
      1.4  Lorentz Spaces
        1.4.1  Decreasing Rearrangements
        1.4.2  Lorentz Spaces
        1.4.3  Duals of Lorentz Spaces
        1.4.4  The Off-Diagonal Marcinkiewicz Interpolation Theorem
        Exercises
    2  Maximal Functions, Fourier Transform, and Distributions
      2.1  Maximal Functions
        2.1.1  The Hardy-Littlewood Maximal Operator
        2.1.2  Control of Other Maximal Operators
        2.1.3  Applications to Differentiation Theory
        Exercises
      2.2  The Schwartz Class and the Fourier Transform
        2.2.1  The Class of Schwartz Functions
        2.2.2  The Fourier Transform of a Schwartz Function
        2.2.3  The Inverse Fourier Transform and Fourier Inversion
        2.2.4  The Fourier Transform on L1 + L2
        Exercises
      2.3  The Class of Tempered Distributions
        2.3.1  Spaces of Test Functions
        2.3.2  Spaces of Functionals on Test Functions
        2.3.3  The Space of Tempered Distributions
        Exercises
      2.4  More About Distributions and the Fourier Transform
        2.4.1  Distributions Supported at a Point
        2.4.2  The Laplacian
        2.4.3  Homogeneous Distributions
        Exercises
      2.5  Convolution Operators on Lp Spaces and Multipliers
        2.5.1  Operators That Commute with Translations
        2.5.2  The Transpose and the Adjoint of a Linear Operator
        2.5.3  The Spaces Mp,q(Rn)
        2.5.4  Characterizations of M1,1 (Rn) and M2,2 (Rn)

        2.5.5  The Space of Fourier Multipliers Mp(Rn)
        Exercises
      2.6  Oscillatory Integrals
        2.6.1  Phases with No Critical Points
        2.6.2  Sublevel Set Estimates and the Van der Corput Lemma
        Exercises
    3  Fourier Series
      3.1  Fourier Coefficients
        3.1.1  The n-Torus Tn
        3.1.2  Fourier Coefficients
        3.1.3  The Dirichlet and Fejer Kernels
        Exercises
      3.2  Reproduction of Functions from Their Fourier Coefficients
        3.2.1  Partial sums and Fourier inversion
        3.2.2  Fourier series of square summable functions
        3.2.3  The Poisson Summation Formula
        Exercises
      3.3  Decay of Fourier Coefficients
        3.3.1  Decay of Fourier Coefficients of Arbitrary Integrable Functions
        3.3.2  Decay of Fourier Coefficients of Smooth Functions
      ……
    4  Topics on Fourier Series
    5  Singular Integrals of Convolution Type
    6  Littlewood-Paley Theory and Multipliers
    7  Weighted Inequalities
    A  Gamma and Beta Functions
    B  Bessel Functions
    C  Rademacher Functions
    D  Spherical Coordinates
    E  Some Trigonometric Identities and Inequalities
    F  Summation by Parts
    G  Basic Functional Analysis
    H  The Minimax Lemma
    I  Taylor's and Mean Value Theorem in Several Variables
    J  The Whitney Decomposition of Open Sets in Rn
    Glossary
    References
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>