欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 几何三部曲(第2卷几何的代数方法)(英文版)
      • 作者:(比)F.博斯克斯|责编:刘慧//高蓉
      • 出版社:世界图书出版公司
      • ISBN:9787519220754
      • 出版日期:2017/01/01
      • 页数:430
    • 售价:31.6
  • 内容大纲

        复投影平面中代数曲线的研究是几何应用如密码技术研究的重要内容,也是线性几何研究向代数几何研究的自然过渡。本书论述了几何空间中的各种不同代数方法,给出了解析几何、仿射几何、欧几里得几何和投影几何研究的具体内容,并详尽地描述了各类几何空间和代数曲线的性质。
  • 作者介绍

  • 目录

    1 The Birth of Analytic Geometry
      1.1 Fermat's Analytic Geometry
      1.2 Descartes' Analytic Geometry
      1.3 More on Cartesian Systems of Coordinates
      1.4 Non-Cartesian Systems of Coordinates
      1.5 Computing Distances and Angles
      1.6 Planes and Lines in Solid Geometry
      1.7 The Cross Product
      1.8 Forgetting the Origin
      1.9 The Tangent to a Curve
      1.10 The Conics
      1.11 The Ellipse
      1.12 The Hyperbola
      1.13 The Parabola
      1.14 The Quadrics
      1.15 The Ruled Quadrics
      1.16 Problems
      1.17 Exercises
    2 Affine Geometry
      2.1 Affine Spaces over a Field
      2.2 Examples of Affine Spaces
      2.3 Affine Subspaces
      2.4 Parallel Subspaces
      2.5 Generated Subspaces
      2.6 Supplementary Subspaces
      2.7 Lines and Planes
      2.8 Barycenters
      2.9 Barycentric Coordinates
      2.10 Triangles
      2.11 Parallelograms
      2.12 Affine Transformations
      2.13 Affine Isomorphisms
      2.14 Translations
      2.15 Projections
      2.16 Symmetries
      2.17 Homotheties and Affinities
      2.18 The Intercept Thales Theorem
      2.19 Affine Coordinates
      2.20 Change of Coordinates
      2.21 The Equations of a Subspace
      2.22 The Matrix of an Affine Transformation
      2.23 The Quadrics
      2.24 The Reduced Equation of a Quadric
      2.25 The Symmetries of a Quadric
      2.26 The Equation of a Non-degenerate Quadric
      2.27 Problems
      2.28 Exercises
    3 More on Real Affine Spaces
      3.1 About Left, Right and Between
      3.2 Orientation of a Real Affine Space

      3.3 Direct and Inverse Affine Isomorphisms
      3.4 Parallelepipeds and Half Spaces
      3.5 Pasch's Theorem
      3.6 Affine Classification of Real Quadrics
      3.7 Problems
      3.8 Exercises
    4 Euclidean Geometry
      4.1 Metric Geometry
      4.2 Defining Lengths and Angles
      4.3 Metric Properties of Euclidean Spaces
      4.4 Rectangles, Diamonds and Squares
      4.5 Examples of Euclidean Spaces
      4.6 Orthonormal Bases
      4.7 Polar Coordinates
      4.8 Orthogonal Projections
      4.9 Some Approximation Problems
      4.10 Isometries
      4.11 Classification of Isometries
      4.12 Rotations
      4.13 Similarities
      4.14 Euclidean Quadrics
      4.15 Problems
      4.16 Exercises
    5 Hermitian Spaces
      5.1 Hermitian Products
      5.2 Orthonormal Bases
      5.3 The Metric Structure of Hermitian Spaces
      5.4 Complex Quadrics
      5.5 Problems
      5.6 Exercises
    6 Projective Geometry
      6.1 Projective Spaces over a Field
      6.2 Projective Subspaces
      6.3 The Duality Principle
      6.4 Homogeneous Coordinates
      6.5 Projective Basis
      6.6 The Anharmonic Ratio
      6.7 Projective Transformations
      6.8 Desargues' Theorem
      6.9 Pappus' Theorem
      6.10 Fano's Theorem
      6.11 Harmonic Quadruples
      6.12 The Axioms of Projective Geometry
      6.13 Projective Quadrics
      6.14 Duality with Respect to a Quadric
      6.15 Poles and Polar Hyperplanes
      6.16 Tangent Space to a Quadric
      6.17 Projective Conics
      6.18 The Anharmonic Ratio Along a Conic
      6.19 The Pascal and Brianchon Theorems

      6.20 Affine Versus Projective
      6.21 Real Quadrics
      6.22 The Topology of Projective Real Spaces
      6.23 Problems
      6.24 Exercises
    7 Algebraic Curves
      7.1 Looking for the Right Context
      7.2 The Equation of an Algebraic Curve
      7.3 The Degree of a Curve
      7.4 Tangents and Multiple Points
      7.5 Examples of Singularities
      7.6 Inflexion Points
      7.7 The Bezout Theorem
      7.8 Curves Through Points
      7.9 The Number of Multiplicities
      7.10 Conics
      7.11 Cubics and the Cramer Paradox
      7.12 Inflexion Points of a Cubic
      7.13 The Group of a Cubic
      7.14 Rational Curves
      7.15 A Criterion of Rationality
      7.16 Problems
      7.17 Exercises
    Appendix A Polynomials over a Field
      A.1 Polynomials Versus Polynomial Functions
      A.2 Euclidean Division
      A.3 The Bezout Theorem
      A.4 Irreducible Polynomials
      A.5 The Greatest Common Divisor
      A.6 Roots of a Polynomial
      A.7 Adding Roots to a Polynomial
      A.8 The Derivative of a Polynomial
    Appendix B Polynomialsin Several Variables
      B.1 Roots
      B.2 Polynomial Domains
      B.3 Quotient Field
      B.4 Irreducible Polynomials
      B.5 Partial Derivatives
    Appendix C Homogeneous Polynomials
      C.1 Basic Properties
      C.2 Homogeneous Versus Non-homogeneous
    Appendix D Resultants
      D.1 The Resultant of two Polynomials
      D.2 Roots Versus Divisibility
      D.3 The Resultant of Homogeneous Polynomials
    Appendix E Symmetric Polynomials
      E.1 Elementary Symmetric Polynomials
      E.2 The Structural Theorem
    Appendix F Complex Numbers
      F.1 The Field of Complex Numbers

      F.2 Modulus, Argument and Exponential
      F.3 The Fundamental Theorem of Algebra
      F.4 More on Complex and Real Polynomials
    Appendix G Quadratic Forms
      G.1 Quadratic Forms over a Field
      G.2 Conjugation and Isotropy
      G.3 Real Quadratic Forms
      G.4 Quadratic Forms on Euclidean Spaces
      G.5 On Complex Quadratic Forms
    Appendix H Dual Spaces
      H.1 The Dual of a Vector Space
      H.2 Mixed Orthogonality
    References and Further Reading
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>