欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 应用预测建模(英文版)
      • 作者:(美)M.库恩//K.约翰逊|责编:刘慧//高蓉
      • 出版社:世界图书出版公司
      • ISBN:9787519220891
      • 出版日期:2017/06/01
      • 页数:600
    • 售价:79.6
  • 内容大纲

        本书是一部关于数据分析的经典教材,聚焦预测建模的实际应用,如如何进行数据预处理、模型调优、预测变量重要性度量、变量选择等。读者可以从中学到许多建模方法以及提高对许多常用的、现代的有效模型的认识,如线性回归、非线性回归和分类模型,涉及树方法、支持向量机等。书中还涉及从数据预处理到建模再到模型评估和选择的整个过程,以及背后的统计思想,涉及各种回归技术和分类技术。
  • 作者介绍

  • 目录

      1 Introduction
        1.1 Prediction Versus Interpretation
        1.2 Key Ingredients of Predictive Models
        1.3 Terminology
        1.4 Example Data Sets and Typical Data Scenarios
        1.5 Overview
        1.6 Notation
    Part Ⅰ General Strategies
      2 A Short Tour of the Predictive Modeling Process
        2.1 Case Study: Predicting Fuel Economy
        2.2 Themes
        2.3 Summary
      3 Data Pre-processing
        3.1 Case Study: Cell Segmentation in High-Content Screening
        3.2 Data Transformations for Individual Predictors
        3.3 Data Transformations for Multiple Predictors
        3.4 Dealing with Missing Values
        3.5 Removing Predictors
        3.6 Adding Predictors
        3.7 Binning Predictors
        3.8 Computing
        Exercises
      4 Over-Fitting and Model Tuning
        4.1 The Problem of Over-Fitting
        4.2 Model Tuning
        4.3 Data Splitting
        4.4 Resampling Techniques
        4.5 Case Study: Credit Scoring
        4.6 Choosing Final Tuning Parameters
        4.7 Data Splitting Recommendations
        4.8 Choosing Between Models
        4.9 Computing
        Exercises
    Part Ⅱ Regression Models
      5 Measuring Performance in Regression Models
        5.1 Quantitative Measures of Performance
        5.2 The Variance-Bias Trade-off
        5.3 Computing
      6 Linear Regression and Its Cousins
        6.1 Case Study: Quantitative Structure-Activity Relationshir Modeling
        6.2 Linear Regression
        6.3 Partial Least Squares
        6.4 Penalized Models
        6.5 Computing
        Exercises
      7 Nonlinear Regression Models
        7.1 Neural Networks
        7.2 Multivariate Adaptive Regression Splines
        7.3 Support Vector Machines
        7.4 K-Nearest Neighbors

        7.5 Computing
        Exercises
      8 Regression Trees and Rule-Based Models
        8.1 Basic Regression Trees
        8.2 Regression Model Trees
        8.3 Rule-Based Models
        8.4 Bagged Trees
        8.5 Random Forests
        8.6 Boosting
        8.7 Cubist
        8.8 Computing
        Exercises
      9 A Summary of Solubility Models
      10 Case Study: Compressive Strength of Concrete Mixtures
        10.1 Model Building Strategy
        10.2 Model Performance
        10.3 Optimizing Compressive Strength
        10.4 Computing
    Part Ⅲ Classification Models
      11 Measuring Performance in Classification Models
        11.1 Class Predictions
        11.2 Evaluating Predicted Classes
        11.3 Evaluating Class Probabilities
        11.4 Computing
      12 Discriminant Analysis and Other Linear Classification Models
        12.1 Case Study: Predicting Successful Grant Applications
        12.2 Logistic Regression
        12.3 Linear Discriminant Analysis
        12.4 Partial Least Squares Discriminant Analysis
        12.5 Penalized Models
        12.6 Nearest Shrunken Centroids
        12.7 Computing
        Exercises
      13 Nonlinear Classification Models
        13.1 Nonlinear Discriminant Analysis
        13.2 Neural Networks
        13.3 Flexible Discriminant Analysis
        13.4 Support Vector Machines
        13.5 K-Nearest Neighbors
        13.6 Naive Bayes
        13.7 Computing
        Exercises
      14 Classification Trees and Rule-Based Models
        14.1 Basic Classification Trees
        14.2 Rule-Based Models
        14.3 Bagged Trees
        14.4 Random Forests
        14.5 Boosting
        14.6 C5.0
        14.7 Comparing Two Encodings of Categorical Predictors

        14.8 Computing
        Exercises
      15 A Summary of Grant Application Models
      16 Remedies for Severe Class Imbalance
        16.1 Case Study: Predicting Caravan Policy Ownership
        16.2 The Effect of Class Imbalance
        16.3 Model Tuning
        16.4 Alternate Cutoffs
        16.5 Adjusting Prior Probabilities
        16.6 Unequal Case Weights
        16.7 Sampling Methods
        16.8 Cost-Sensitive Training
        16.9 Computing
        Exercises
      17 Case Study: Job Scheduling
        17.1 Data Splitting and Model Strategy
        17.2 Results
        17.3 Computing
    Part Ⅳ Other Considerations
      18 Measuring Predictor Importance
        18.1 Numeric Outcomes
        18.2 Categorical Outcomes
        18.3 Other Approaches
        18.4 Computing
        Exercises
      19 An Introduction to Feature Selection
        19.11 Consequences of Using Non-informative Predictors
        19.12 Approaches for Reducing the Number of Predictor
        19.13 Wrapper Methods
        19.14 Filter Methods
        19.15 Selection Bias
        19.16 Case Study: Predicting Cognitive Impairment
        19.17 Computing
        Exercises
      20 Factors That Can Affect Model Performance
        20.1 Type Ⅲ Errors
        20.2 Measurement Error in the Outcome
        20.3 Measurement Error in the Predictors
        20.4 Discretizing Continuous Outcomes
        20.5 When Should You Trust Your Model's Prediction?
        20.6 The Impact of a Large Sample
        20.7 Computing
        Exercises
    Appendix
      A A Summary of Various Models
      B An Introduction to R
        B.1 Start-Up and Getting Help
        B.2 Packages
        B.3 Creating Objects
        B.4 Data Types and Basic Structures

        B.5 Working with Rectangular Data Sets
        B.6 Objects and Classes
        B.7 R Functions
        B.8 The Three Faces of =
        B.9 The AppliedPredictiveModeling Package
        B.10 The caret Package
        B.11 Software Used in this Text
      C Interesting Web Sites
    References
    Indicies
    Computing
    General

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>