欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 线性代数及其应用(第5版英文版)/高等学校教材系列
      • 作者:(美)戴维·C.莱//史蒂文·R.莱//朱迪·J.麦克唐纳|责编:谭海平
      • 出版社:电子工业
      • ISBN:9787121396175
      • 出版日期:2020/09/01
      • 页数:565
    • 售价:39.6
  • 内容大纲

        线性代数是处理矩阵和向量空间的数学分支科学,在现代数学的各个领域都有应用。本书内容主要包括线性代数中的线性方程、矩阵代数、行列式、向量空间、特征值与特征向量、正交性与最小二乘、对称矩阵与二次型、向量空间解析几何等,目的是让学生掌握线性代数的基本概念、理论和证明。全书内容简洁、例题丰富、版式美观,除介绍基本概念外,还介绍了它们在各个领域中的具体应用。
        本书是一本介绍性的线性代数教材,内容翔实,层次清晰,适合作为高等学校理工科数学课程的双语教学用书,也可作为公司职员及工程学研究人员的参考书。
  • 作者介绍

  • 目录

    Preface
    A Note to Students
    Chapter 1  Linear Equations in Linear Algebra
      INTRODUCTORY EXAMPLE: Linear Models in Economics and Engineering
      1.1  Systems of Linear Equations
      1.2  Row Reduction and Echelon Forms
      1.3  Vector Equations
      1.4  The Matrix Equation Ax=b
      1.5  Solution Sets of Linear Systems
      1.6  Applications of Linear Systems
      1.7  Linear Independence
      1.8  Introduction to Linear Transformations
      1.9  The Matrix of a Linear Transformation
      1.10  Linear Models in Business, Science, and Engineering
      Supplementary Exercises
    Chapter 2  Matrix Algebra
      INTRODUCTORY EXAMPLE: Computer Models in Aircraft Design
      2.1  Matrix Operations
      2.2  The Inverse of a Matrix
      2.3  Characterizations of Invertible Matrices
      2.4  Partitioned Matrices
      2.5  Matrix Factorizations
      2.6  The Leontief Input–Output Model
      2.7  Applications to Computer Graphics
      2.8  Subspaces of Rn
      2.9  Dimension and Rank
      Supplementary Exercises
    Chapter 3   Determinants
      INTRODUCTORY EXAMPLE: Random Paths and Distortion
      3.1  Introduction to Determinants
      3.2  Properties of Determinants
      3.3  Cramer's Rule, Volume, and Linear Transformations
      Supplementary Exercises
    Chapter 4  Vector Spaces
      INTRODUCTORY EXAMPLE: Space Flight and Control Systems
      4.1  Vector Spaces and Subspaces
      4.2  Null Spaces, Column Spaces, and Linear Transformations
      4.3  Linearly Independent Sets; Bases
      4.4  Coordinate Systems
      4.5  The Dimension of a Vector Space
      4.6  Rank
      4.7  Change of Basis
      4.8  Applications to Difference Equations
      4.9  Applications to Markov Chains
      Supplementary Exercises
    Chapter 5  Eigenvalues and Eigenvectors
      INTRODUCTORY EXAMPLE: Dynamical Systems and Spotted Owls
      5.1  Eigenvectors and Eigenvalues
      5.2  The Characteristic Equation
      5.3  Diagonalization

      5.4  Eigenvectors and Linear Transformations
      5.5  Complex Eigenvalues
      5.6  Discrete Dynamical Systems
      5.7  Applications to Differential Equations
      5.8  Iterative Estimates for Eigenvalues
      Supplementary Exercises
    Chapter 6  Orthogonality and Least Squares
      INTRODUCTORY EXAMPLE: The North American Datum and GPS Navigation
      6.1  Inner Product, Length, and Orthogonality
      6.2  Orthogonal Sets
      6.3  Orthogonal Projections
      6.4  The Gram-Schmidt Process
      6.5  Least-Squares Problems
      6.6  Applications to Linear Models
      6.7  Inner Product Spaces
      6.8  Applications of Inner Product Spaces
      Supplementary Exercises
    Chapter 7  Symmetric Matrices and Quadratic Forms
      INTRODUCTORY EXAMPLE: Multichannel Image Processing
      7.1  Diagonalization of Symmetric Matrices
      7.2  Quadratic Forms
      7.3  Constrained Optimization
      7.4  The Singular Value Decomposition
      7.5  Applications to Image Processing and Statistics
      Supplementary Exercises
    Chapter 8  The Geometry of Vector Spaces
      INTRODUCTORY EXAMPLE: The Platonic Solids
      8.1  Affine Combinations
      8.2  Affine Independence
      8.3  Convex Combinations
      8.4  Hyperplanes
      8.5  Polytopes
      8.6  Curves and Surfaces
    Chapter 9  Optimization (Online)
      INTRODUCTORY EXAMPLE: The Berlin Airlift
      9.1  Matrix Games
      9.2  Linear Programming—Geometric Method
      9.3  Linear Programming—Simplex Method
      9.4  Duality
    Chapter 10  Finite-State Markov Chains (Online)
      INTRODUCTORY EXAMPLE: Googling Markov Chains
      10.1  Introduction and Examples
      10.2  The Steady-State Vector and Google's PageRank
      10.3  Communication Classes
      10.4  Classification of States and Periodicity
      10.5  The Fundamental Matrix
      10.6  Markov Chains and Baseball Statistics
    Appendixes
      A  Uniqueness of the Reduced Echelon Form
      B  Complex Numbers

    Glossary
    Answers to Odd-Numbered Exercises

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>