濠电偛妫庨崹鑲╂崲鐎n喖绀傚璺侯槸椤﹀弶绻濋姀鐘叉毐闁靛洤娲畷姘跺煛閳ь剛鑺辫ぐ鎺戞闁哄鐏濈壕鍨槈閺冩挾鐣辩紒銊ф暩缁辨棃鏁撻敓锟� [闂佽皫鍡╁殭缂傚稄鎷� | 闂佺ǹ绻愮粔鐑藉垂閸屾埃鏋栭柕濞垮劚閺傗偓]

    • 酉反射群(英文)/国外优秀数学著作原版系列
      • 作者:(澳)古斯塔夫·I.莱勒//唐纳德·E.泰勒|责编:关虹玲//宋淼
      • 出版社:哈尔滨工业大学
      • ISBN:9787560391946
      • 出版日期:2020/11/01
      • 页数:375
    • 售价:23.2
  • 内容大纲

        复反射是固定在超平面上每个点的线性变换,它类似于通过万花筒或镜子排列观看图像时所经历的转换。本书使用线性变换的方法对n维复空间中由复反射产生的所有变换组进行了完整的分类,对不可约群进行了详细的研究,对反射群的反射子群进行了完整的分类,充分讨论了反射群元素的本征空间理论。书中附录还概述了表示论、拓扑学和数学物理之间的联系。本书包含了100多个从简单到具有一定难度的练习题,适合大学师生、研究生及数学爱好者参考阅读,也适合代数、拓扑学和数学物理的研究人员参考阅读。
  • 作者介绍

  • 目录

    Introduction
      1. Overview of this book
      2. Some detail concerning the content
      3. Acknowledgements
      4. Leitfaden
    Chapter 1. Preliminaries
      1. Hermitian forms
      2. Reflections
      3. Groups
      4. Modules and representations
      5. Irreducible unitary reflection groups
      6. Caftan matrices
      7. The field of definition
      Exercises
    Chapter 2. The groups G(m, p, n)
      1. Primitivity and imprimitivity
      2. Wreath products and monomial representations
      3. Properties of the groups G(m, p, n)
      4. The imprimitive unitary reflection groups
      5. Imprimitive subgroups of primitive reflection groups
      6. Root systems for G(m, p, n)
      7. Generators for G(m, p, n)
      8. Invariant polynomials for G(m,p, n)
      Exercises
    Chapter 3. Polynomial invariants
      1. Tensor and symmetric algebras
      2. The algebra of invariants
      3. Invariants of a finite group
      4. The action of a reflection
      5. The Shephard-Todd--Chevalley Theorem
      6. The coinvariant algebra
      Exercises
    Chapter 4. Poincare series and characterisations of reflection groups
      1. Poincare series
      2. Exterior and symmetric algebras and Molien's Theorem
      3. A characterisation of finite reflection groups
      4. Exponents
      Exercises
    Chapter 5. Quaternions and the finite subgroups of SU2 (C)
      1. The quaternions
      2. The groups Oa (R) and 04 (R)
      3. The groups SU2 (C) and U2 (C)
      4. The finite subgroups of the quaternions
      5. The finite subgroups of S03 (R) and SU2 (C)
      6. Quaternions, reflections and root systems
      Exercises
    Chapter 6. Finite unitary reflection groups of rank two
      1. The primitive reflection subgroups of U2 (C)
      2. The reflection groups of type T
      3. The reflection groups of type O

      4. The reflection groups of type I
      5. Cartan matrices and the ring of definition
      6. Invariants
      Exercises
    Chapter 7. Line systems
      1. Bounds online systems
      2. Star-closed Euclidean line systems
      3. Reflections and star-closed line systems
      4. Extensions of line systems
      5. Line systems for imprimitive reflection groups
      6. Line systems for primitive reflection groups
      7. The Goethals-Seidel decomposition for 3-systems
      8. Extensions of D(2) and Dn(3)
      9. Further structure of line systems in Cn
      10. Extensions of Euclidean line systems
      11. Extensions of.An, gn and Kn in Cn
      12. Extensions of 4-systems
      Exercises
    Chapter 8. The Shephard and Todd classification
      1. Outline of the classification
      2. Blichfeldt's Theorem
      3. Consequences of Blichfeldt's Theorem
      4. Extensions of 5-systems
      5. Line systems and reflections of order three
      6. Extensions of ternary 6-systems
      7. The classification
      8. Root systems and the ring of definition
      9. Reduction modulo p
      10. Identification of the primitive reflection groups
      Exercises
    Chapter 9. The orbit map, harmonic polynomials and semi-invariants
      1. The orbit map
      2. Skew invariants and the Jacobian
      3. The rank of the Jacobian
      4. Semi-invariants
      5. Differential operators
      6. The space of G-harmonic polynomials
      7. Steinberg's fixed point theorem
      Exercises
    Chapter 10. Covariants and related polynomial identities
      1. The space of covariants
      2. Gutkin's Theorem
      3. Differential invariants
      4. Some special cases of covariants
      5. Two-variable Poincar6 series and specialisations
      Exercises
    Chapter 11. Eigenspace theory and reflection subquotients
      1. Basic affine algebraic geometry
      2. Eigenspaces of elements of reflection groups
      3. Reflection subquotients of unitary reflection groups

      4. Regular elements
      5. Properties of the reflection subquotients
      6. Eigenvalues of pseudoregular elements
    Chapter 12. Reflection cosets and twisted invariant theory
      1. Reflection cosets
      2. Twisted invariant theory
      3. Eigenspace theory for reflection cosets
      4. Subquotients and centralisers
      5. Parabolic subgroups and the coinvariant algebra
      6. Duality groups
      Exercises
    Appendix A. Some background in commutative algebra
    Appendix B. Forms over finite fields
      1. Basic definitions
      2. Witt's Theorem
      3. The Wall form, the spinor norm and Dickson's invariant
      4. Order formulae
      5. Reflections in finite orthogonal groups
    Appendix C. Applications and further reading
      1. The space of regular elements
      2. Fundamental groups, braid groups, presentations
      3. Hecke algebras
      4. Reductive groups over finite fields
    Appendix D. Tables
      1. The primitive unitary reflection groups
      2. Degrees and codegrees
      3. Cartan matrices
      4. Maximal subsystems
      5. Reflection cosets
    Bibliography
    Index of notation
    Index
    编辑手记

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>