欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 计算流体动力学导论--有限体积法(第2版)(英文版)
      • 作者:(美)H.K.Versteeg//W.Malalasekera|责编:高蓉//李黎
      • 出版社:世界图书出版公司
      • ISBN:9787510005572
      • 出版日期:2010/05/01
      • 页数:503
    • 售价:51.6
  • 内容大纲

        本书是一本非常实用的计算流体动力学教材,它以简明、清晰的语言介绍了计算流体动力学的基本原理、控制方程、边界条件、湍流及其模式、有限体积法等。与上一版相比,在保持第一版基本结构和写作风格基础上,本书增加了一部分内容介绍CFD重要发展;在处理流体流方面,本书增加了支持LES和DNS的基本观点的综述,使得内容结构更加完整。本书还重点介绍了目前在各类流行商业软件中普遍采用的基于压力求解体系的有限体积法。
  • 作者介绍

  • 目录

    Preface
    Acknowledgements
    1  Introduction
      1.1  What is CFD?
      1.2  How does a CFD code work?
      1.3  Problem solving with CFD
      1.4  Scope of this book
    2  Conservation laws of fluid motion and boundary conditions
      2.1  Governing equations of fluid flow and heat transfer
        2.1.1  Mass conservation in three dimensions
        2.1.2  Rates of change following a fluid particle and for a fluid element
        2.1.3  Momentum equation in three dimensions
        2.1.4  Energy equation in three dimensions
      2.2  Equations of state
      2.3  Navier-Stokes equations for a Newtonian fluid
      2.4  Conservative form of the governing equations of fluid flow
      2.5  Differential and integral forms of the general transport equations
      2.6  Classification of physical behaviours
      2.7  The role of characteristics in hyperbolic equations
      2.8  Classification method for simple PDEs
      2.9  Classification of fluid flow equations
      2.10  Auxiliary conditions for viscous fluid flow equations
      2.11  Problems in transonic and supersonic compressible flows
      2.12  Summary
    3  Turbulence and its modelling
      3.1  What is turbulence?
      3.2  Transition from laminar to turbulent flow
      3.3  Descriptors of turbulent flow
      3.4  Characteristics of simple turbulent flows
        3.4.1  Free turbulent flows
        3.4.2  Flat plate boundary layer and pipe flow
        3.4.3  Summary
      3.5  The effect of turbulent fluctuations on properties of the mean flow
      3.6  Turbulent flow calculations
      3.7  Reynolds-averaged Navier-Stokes equations and classical turbulence models
        3.7.1  Mixing length model
        3.7.2  The k-ε model
        3.7.3  Reynolds stress equation models
        3.7.4  Advanced turbulence models
        3.7.5  Closing remarks-RANS turbulence models
      3.8  Large eddy simulation
        3.8.1  Spacial filtering of unsteady Navier-Stokes equations
        3.8.2  Smagorinksy-Lilly SGS model
        3.8.3  Higher-order SGS models
        3.8.4  Advanced SGS models
        3.8.5  Initial and boundary conditions for LES
        3.8.6  LES applications in flows with complex geometry
        3.8.7  General comments on performance of LES
      3.9  Direct numerical simulation
        3.9.1  Numerical issues in DNS

        3.9.2  Some achievements of DNS
      3.10  Summary
    4  The finite volume method for diffusion problems
      4.1  Introduction
      4.2  Finite volume method for one-dimensional steady state diffusion
      4.3  Worked examples: one-dimensional steady state diffusion
      4.4  Finite volume method for two-dimensional diffusion problems
      4.5  Finite volume method for three-dimensional diffusion problems
      4.6  Summary
    5  The finite volume method for convection-diffusion problems
      5.1  Introduction
      5.2  Steady one-dimensional convection and diffusion
      5.3  The central differencing scheme
      5.4  Properties of discretisation schemes
        5.4.1  Conservativeness
        5.4.2  Boundedness
        5.4.3  Transportiveness
      5.5  Assessment of the central differencing scheme for convection-diffusion problems
      5.6  The upwind differencing scheme
        5.6.1  Assessment of the upwind differencing scheme
      5.7  The hybrid differencing scheme
        5.7.1  Assessment of the hybrid differencing scheme
        5.7.2  Hybrid differencing scheme for multi-dimensional convection-diffusion
      5.8  The power-law scheme
      5.9  Higher-order differencing schemes for convection-diffusion problems
        5.9.1  Quadratic upwind differencing scheme: the QUICK scheme
        5.9.2  Assessment of the QUICK scheme
        5.9.3  Stability problems of the QUICK scheme and remedies
        5.9.4  General comments on the QUICK differencing scheme
      5.10  TVD schemes
        5.10.1  Generalisation of upwind-biased discretisation schemes
        5.10.2  Total variation and TVD schemes
        5.10.3  Criteria for TVD schemes
        5.10.4  Flux limiter functions
        5.10.5  Implementation of TVD schemes
        5.10.6  Evaluation of TVD schemes
      5.11  Summary
    6  Solution algorithms for pressure-velocity coupling in steady flows
      6.1  Introduction
      6.2  The staggered grid
      6.3  The momentum equations
      6.4  The SIMPLE algorithm
      6.5  Assembly of a complete method
      6.6  The SIMPLER algorithm
      6.7  The SIMPLEC algorithm
      6.8  The PISO algorithm
      6.9  General comments on SIMPLE, SIMPLER, SIMPLEC and PISO
      6.10  Worked examples of the SIMPLE algorithm
      6.11  Summary
    7  Solution of discretised equations

      7.1  Introduction
      7.2  The TDMA
      7.3  Application of the TDMA to two-dimensional problems
      7.4  Application of the TDMA to three-dimensional problems
      7.5  Examples
        7.5.1  Closing remarks
      7.6  Point-iterative methods
        7.6.1  Jacobi iteration method
        7.6.2  Gauss-Seidel iteration method
        7.6.3  Relaxation methods
      7.7  Multigrid techniques
        7.7.1  An outline of a multigrid procedure
        7.7.2  An illustrative example
        7.7.3  Multigrid cycles
        7.7.4  Grid generation for the multigrid method
      7.8  Summary
    8  The finite volume method for unsteady flows
      8.1  Introduction
      8.2  One-dimensional unsteady heat conduction
        8.2.1  Explicit scheme
        8.2.2  Crank-Nicolson scheme
        8.2.3  The fully implicit scheme
      8.3  Illustrative examples
      8.4  Implicit method for two-and three-dimensional problems
      8.5  Discretisation of transient convection-diffusion equation
      8.6  Worked example of transient convection-diffusion using QUICK differencing
      8.7  Solution procedures for unsteady flow calculations
        8.7.1  Transient SIMPLE
        8.7.2  The transient PISO algorithm
      8.8  Steady state calculations using the pseudo-transient approach
      8.9  A brief note on other transient schemes
      8.10  Summary
    9  Implementation of boundary conditions
      9.1  Introduction
      9.2  Inlet boundary conditions
      9.3  Outlet boundary conditions
      9.4  Wall boundary conditions
      9.5  The constant pressure boundary condition
      9.6  Symmetry boundary condition
      9.7  Periodic or cyclic boundary condition
      9.8  Potential pitfalls and final remarks
    10  Errors and uncertainty in CFD modelling
      10.1  Errors and uncertainty in CFD
      10.2  Numerical errors
      10.3  Input uncertainty
      10.4  Physical model uncertainty
      10.5  Verification and validation
      10.6  Guidelines for best practice in CFD
      10.7  Reporting/documentation of CFD simulation inputs and results
      10.8  Summary

    11  Methods for dealing with complex geometries
      11.1  Introduction
      11.2  Body-fitted co-ordinate grids for complex geometries
      11.3  Catesian vs, curvilinear grids-an example
      11.4  Curvilinear grids-difficulties
      11.5  Block-structured grids
      11.6  Unstructured grids
      11.7  Discretisation in unstructured grids
      11.8  Discretisation of the diffusion term
      11.9  Discretisation of the convective term
      11.10  Treatment of source terms
      11.11  Assembly of discretised equations
      11.12  Example calculations with unstructured grids
      11.13  Pressure-velocity coupling in unstructured meshes
      11.14  Staggered vs. co-located grid arrangements
      11.15  Extension of the face velocity interpolation method to unstructured meshes
      11.16  Summary
    12  CFD modelling of combustion
      12.1  Introduction
      12.2  Application of the first law of thermodynamics to a combustion system
      12.3  Enthalpy of formation
      12.4  Some important relationships and properties of gaseous mixtures
      12.5  Stoichiometry
      12.6  Equivalence ratio
      12.7  Adiabatic flame temperature
      12.8  Equilibrium and dissociation
      12.9  Mechanisms of combustion and chemical kinetics
      12.10  Overall reactions and intermediate reactions
      12.11  Reaction rate
      12.12  Detailed mechanisms
      12.13  Reduced mechanisms
      12.14  Governing equations for combusting flows
      12.15  The simple chemical reacting system (SCRS)
      12.16  Modelling of a laminar diffusion flame- an example
      12.17  CFD calculation of turbulent non-premixed combustion
      12.18  SCRS model for turbulent combustion
      12.19  Probability density function approach
      12.20  Beta pdf
      12.21  The chemical equilibrium model
      12.22  Eddy break-up model of combustion
      12.23  Eddy dissipation concept
      12.24  Laminar flamelet model
      12.25  Generation of laminar flamelet libraries
      12.26  Statistics of the non-equilibrium parameter
      12.27  Pollutant formation in combustion
      12.28  Modelling of thermal NO formation in combustion
      12.29  Flamelet-based NO modelling
      12.30  An example to illustrate laminar flamelet modelling and NO modelling of a turbulent flame
      12.31  Other models for non-premixed combustion
      12.32  Modelling of premixed combustion

      12.33  Summary
    13  Numerical calculation of radiative heat transfer
      13.1  Introduction
      13.2  Governing equations of radiative heat transfer
      13.3  Solution methods
      13.4  Four popular radiation calculation techniques suitable for CFD
        13.4.1  The Monte Carlo method
        13.4.2  The discrete transfer method
        13.4.3  Ray tracing
        13.4.4  The discrete ordinates method
        13.4.5  The finite volume method
      13.5  Illustrative examples
      13.6  Calculation of radiative properties in gaseous mixtures
      13.7  Summary
    Appendix A  Accuracy of a flow simulation
    Appendix B  Non-uniform grids
    Appendix C  Calculation of source terms
    Appendix D  Limiter functions used in Chapter 5
    Appendix E  Derivation of one-dimensional governing equations for steady, incompressible flow through a planar nozzle
    Appendix F  Alternative derivation for the term (n.grad oAi) in Chapter 11
    Appendix G  Some examples
    Bibliography
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>