-
内容大纲
第一部分三角形:欧几里得几何学;基本概念和公理;驴桥定理;中线和重心;内切圆和外接圆;欧拉线和垂心;九点圆;两个极值问题;Morley定理;正多边形;分圆法;三等分角;等距变换;对称;群;两镜面反射的乘积;万花筒;星形多边型。欧几里得平面几何学:正反等距变换;平移;滑移反射;反射和180度旋转;等距变换结论总结;定律;长条形上的图案模式。二维空间晶体结构:格及Dirichlet区域;一般格上的对称群;埃舍尔的艺术;积木的六种模式;晶体结构约束;正则镶嵌;多点共线问题。欧几里得平面的相似性:伸缩。 -
作者介绍
-
目录
Part Ⅰ
1 TRIANGLES
1.1 Euclid
1.2 Primitive concepts and axioms
1.3 Pons asinorum
1.4 The medians and the centroid
1.5 The incircle and the circumcircle
1.6 The Euler line and the orthocenter
1.7 The nine-point circle
1.8 Two extremum problems
1.9 Morley's theorem
2 REGULAR POLYGONS
2.1 Cyclotomy
2.2 Angle trisection
2.3 Isometry
2.4 Symmetry
2.5 Groups
2.6 The product of two reflections
2.7 The kaleidoscope
2.8 Star polygons
3 ISOMETRY IN THE EUCLIDEAN PLANE
3.1 Direct and opposite isometries
3.2 Translation
3.3 Glide reflection
3.4 Reflections and half-turns
3.5 Summary of results on isometries
3.6 Hjelmslev's theorem
3.7 Patterns on a strip
4 TWO-DIMENSIONAL CRYSTALLOGRAPHY
4.1 Lattices and their Dirichlet regions
4.2 The symmetry group of the general lattice
4.3 The art of M. C. Escher
4.4 Six patterns of bricks
4.5 The crystallographic restriction
4.6 Regular tessellations
4.7 Sylvester's problem of collinear points
5 SIMILARITY IN THE EUCLIDEAN PLANE
5.1 Dilatation
5.2 Centers of similitude
5.3 The nine-point center
5.4 The invariant point of a similarity
5.5 Direct similarity
5.6 Opposite similarity
6 CIRCLES AND SPHERES
6.1 Inversion in a circle
6.2 Orthogonal circles
6.3 Inversion of lines and circles
6.4 The inversive plane
6.5 Coaxal circles
6.6 The circle of Apollonius
6.7 Circle-preserving transformations
6.8 Inversion in a sphere
6.9 The elliptic plane
7 ISOMETRY AND SIMILARITY IN EUCLIDEAN SPACE
7.1 Direct and opposite isometries
7.2 The central inversion
7.3 Rotation and translation
7.4 The product of three reflections
7.5 Twist
7.6 Dilative rotation
7.7 Sphere-preserving transformations
Part Ⅱ
8 COORDINATES
8.1 Cartesian coordinates
8.2 Polar coordinates
8.3 The circle
8.4 Conics
8.5 Tangent, arc length, and area
8.6 Hyperbolic functions
8.7 The equiangular spiral
8.8 Three dimensions
9 COMPLEX NUMBERS
9.1 Rational numbers
9.2 Real numbers
9.3 The Argand diagram
9.4 Modulus and amplitude
9.5 The formula eπi + 1 = 0
9.6 Roots of equations
9.7 Conformal transformations
10 THE FIVE PLATONIC SOLIDS
10.1 Pyramids, prisms, and antiprisms
10.2 Drawings and models
10.3 Euler's formula
10.4 Radii and angles
10.5 Reciprocal polyhedra
11 THE GOLDEN SECTION AND PHYLLOTAXIS
11.1 Extreme and mean ratio
11.2 De divina proportione
11.3 The golden spiral
11.4 The Fibonacci numbers
11.5 Phyllotaxis
Part Ⅲ
12 ORDERED GEOMETRY
12.1 The extraction of two distinct geometries from Euclid
12.2 Intermediacy
12.3 Sylvester's problem of collinear points
12.4 Planes and hyperplanes
12.5 Continuity
12.6 Parallelism
13 AFFINE GEOMETRY
13.1 The axiom of parallelism and the "Desargues" axiom
13.2 Dilatations
13.3 Affinities
13.4 Equiaffinities
13.5 Two-dimensional lattices
13.6 Vectors and centroids
13.7 Barycentric coordinates
13.8 Affine space
13.9 Three-dimensional lattices
14 PROJECTIVE GEOMETRY
14.1 Axioms for the general projective plane
14.2 Projective coordinates
14.3 Desargues's theorem
14.4 Quadrangular and harmonic sets
14.5 Projectivities
14.6 Collineations and correlations
14.7 The conic
14.8 Projective space
14.9 Euclidean space
15 ABSOLUTE GEOMETRY
15.1 Congruence
15.2 Parallelism
15.3 Isometry
15.4 Finite groups of rotations
15.5 Finite groups of isometries
15.6 Geometrical crystallography
15.7 The polyhedral kaleidoscope
15.8 Discrete groups generated by inversions
16 HYPERBOLIC GEOMETRY
16.1 The Euclidean and hyperbolic axioms of parallelism
16.2 The question of consistency
16.3 The angle of parallelism
16.4 The finiteness of triangles
16.5 Area and angular defect
16.6 Circles, horocycles, and equidistant curves
16.7 Poincaré's "half-plane" model
16.8 The horosphere and the Euclidean plane
Part Ⅳ
17 DIFFERENTIAL GEOMETRY OF CURVES
17.1 Vectors in Euclidean space
17.2 Vector functions and their derivatives
17.3 Curvature, evolutes, and involutes
17.4 The catenary
17.5 The tractrix
17.6 Twisted curves
17.7 The circular helix
17.8 The general helix
17.9 The concho-spiral
18 THE TENSOR NOTATION
18.1 Dual bases
18.2 The fundamental tensor
18.3 Reciprocal lattices
18.4 The critical lattice of a sphere
18.5 General coordinates
18.6 The alternating symbol
19 DIFFERENTIAL GEOMETRY OF SURFACES
19.1 The use of two parameters on a surface
19.2 Directions on a surface
19.3 Normal curvature
19.4 Principal curvatures
19.5 Principal directions and lines of curvature
19.6 Umbilics
19.7 Dupin's theorem and Liouville's theorem
19.8 Dupin's indicatrix
20 GEODESICS
20.1 Theorema egregium
20.2 The differential equations for geodesics
20.3 The integral curvature of a geodesic triangle
20.4 The Euler-Poincaré characteristic
20.5 Surfaces of constant curvature
20.6 The angle of parallelism
20.7 The pseudosphere
21 TOPOLOGY OF SURFACES
21.1 Orientable surfaces
21.2 Nonorientable surfaces
21.3 Regular maps
21.4 The four-color problem
21.5 The six-color theorem
21.6 A sufficient number of colors for any surface
21.7 Surfaces that need the full number of colors
22 FOUR-DIMENSIONAL GEOMETRY
22.1 The simplest four-dimensional figures
22.2 A necessary condition for the existence of(p, q, r)
22.3 Constructions for regular polytopes
22.4 Close packing of equal spheres
22.5 A statistical honeycomb
TABLES
REFERENCES
ANSWERS To EXERCISES
INDEX
同类热销排行榜
- 目送/人生三书
- 21世纪的《背影》 + 感人至深的“生死笔记”+ 龙应台亲手摄影 + 跨三代共读的人生之书! 华人世界率性犀利的一枝笔,龙应台独家...
- 顾城的诗(金版)(精)/蓝星诗库
- 人类群星闪耀时(插图本)/译林名著精选
- 牛津高阶英汉双解词典(附光盘第8版)(精)
- 文化苦旅(新版)
- 摆渡人
- 解忧杂货店(精)
- 骆驼祥子
- 曾国藩(又笨又慢平天下)
- 查令十字街84号(珍藏版)(精)
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...