欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 广义微分几何(英文版)
      • 作者:(法)帕特里克·伊格莱西亚斯-泽穆尔|责编:陈亮//刘叶青
      • 出版社:世图出版公司
      • ISBN:9787519296087
      • 出版日期:2022/09/01
      • 页数:529
    • 售价:47.6
  • 内容大纲

        《广义微分几何》是该学科的第一本教科书,由美国数学协会出版,奠定了在理论物理中使用的微分几何主要领域的基础:可微性、卡坦微分学、同源和上同源、不同群、纤维束和连接等。书中还配有习题和解答有助于读者更好地学习。本书对研究微分几何或数学物理的学生与研究人员极为有用。
  • 作者介绍

  • 目录

    Preface to the revised print
    Preface
    Chapter 1.  Diffeology and Diffeological Spaces
      Linguistic Preliminaries
        Euclidean spaces and domains
        Sets, subsets, maps etc.
        Parametrizations in sets
        Smooth parametrizations in domains
      Axioms of Diffeology
        Diffeologies and diffeological spaces
        Plots of a diffeological space
        Diffeology or diffeological space?
        The set of diffeologies of a set
        Real domains as diffeological spaces
        The wire diffeology
        A diffeology for the circle
        A diffeology for the square
        A diffeology for the sets of smooth maps
      Smooth Maps and the Category Diffeology
        Smooth maps
        Composition of smooth maps
        Plots are smooth
        Diffeomorphisms
      Comparing Diffeologies
        Fineness of diffeologies
        Fineness via the identity map
        Discrete diffeology
        Coarse diffeology
        Intersecting diffeologies
        Infimum of a family of diffeologies
        Supremum of a family of diffeologies
        Playing with bounds
      Pulling Back Diffeologies
        Pullbacks of diffeologies
        Smoothness and pullbacks
        Composition of pullbacks
      Inductions
        What is an induction?
        Composition of inductions
        Criterion for being an induction
        Surjective inductions
      Subspaces of Diffeological Spaces
        Subspaces and subset diffeology
        Smooth maps to subspaces
        Subspaces subsubspaces etc.
        Inductions identify source and image
        Restricting inductions to subspaces
        Discrete subsets of a diffeological space
      Sums of Diffeological Spaces
        Building sums with spaces

        Refining a sum
        Foliated diffeology
        Klein structure and singularities of a diffeological space
      Pushing Forward Diffeologies
        Pushforward of diffeologies
        Smoothness and pushforwards
        Composition of pushforwards
      Subductions
        What is a subduction?
        Compositions of subductions
        Criterion for being a subduction
        Injective subductions
      Quotients of Diffeological Spaces
        Quotient and quotient diffeology
        Smooth maps from quotients
        Uniqueness of quotient
        Sections of a quotient
        Strict maps, between quotients and subspaces
      Products of Diffeological Spaces
        Building products with spaces
        Projections on factors are subductions
      Functional Diffeology
        Functional diffeologies
        Restriction of the functional diffeology
        The composition is smooth
        Functional diffeology and products
        Functional diffeology on groups of diffeomorphisms
        Slipping X into (X,X),X)
        Functional diffeology of a diffeology
        Iterating paths
        Compact controlled diffeology
      Generating Families
        Generating diffeology
        Generated by the empty family
        Criterion of generation
        Generating diffeology as projector
        Fineness and generating families
        Adding and intersecting families
        Adding constants to generating family
        Lifting smooth maps along generating families
        Pushing forward families
        Pulling back families
        Nebula of a generating family
      Dimension of Diffeological Spaces
        Dimension of a diffeological space
        The dimension is a diffeological invariant
        Dimension of real domains
        Dimension zero spaces are discrete
        Dimensions and quotients of diffeologies
    Chapter 2.  Locality and Diffeologies

    Chapter 3.  Diffeological Vector Spaces
    Chapter 4.  Modeling Spaces, Manifolds, etc.
    Chapter 5.  Homotopy of Diffeological Spaces
    Chapter 6.  Cartan-De Rham Calculus
    Chapter 7.  Diffeological Groups
    Chapter 8.  Diffeological Fiber Bundles
    Chapter 9.  Symplectic Diffeology
    Solutions to Exercises
    Afterword
    Notation and Vocabulary
    Index
    Bibliography

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>