-
内容大纲
本书主要介绍医学影像处理的基本技术与实现方法,以医学影像智能诊断方法为主,涉及数字信号处理、统计学、机器学习等理论和技术。全书共分为9章:第1章介绍智慧医疗的概念、人工智能与医学影像诊断、深度学习医学影像应用与用于医学影像的其他人工智能算法;第2章~第3章介绍人工智能医学影像诊断的基础知识,包括编程基础与各种医学影像介绍,还详细介绍医学影像的基本处理方法;第4章~第5章介绍卷积神经网络基础知识与医学影像任务,包括多种卷积神经网络与神经网络模型的评价标准、常见的医学影像任务(医学影像诊断、检测、分割);第6章~第9章介绍智能医学影像处理实际案例,包括乳腺超声影像中的乳腺肿瘤检测与良恶性诊断、眼科OCTA图像诊断糖尿病、肺CT图像中的肺部多种疾病诊断。
本书可以作为计算机科学与技术、电子科学与技术、控制工程与科学、智能科学与技术等理工科及相关专业的高等院校本科教材,也可以作为研究生教材,并适合从事医学影像处理、人工智能等研究的科研人员和爱好者参考使用。 -
作者介绍
-
目录
第1篇 概念篇
第1章 绪论
1.1 智慧医疗的概念
1.1.1 什么是智慧医疗
1.1.2 为什么需要智慧医疗
1.1.3 智慧医疗简史
1.1.4 智慧医疗发展愿景
1.2 人工智能与医学影像诊断
1.2.1 医学影像研究方法
1.2.2 人工智能医学诊断的方式
1.2.3 人工智能技术对医学影像的影响
1.2.4 人工智能技术在医学影像领域的应用
1.3 深度学习医学影像应用
1.4 用于医学影像的其他人工智能算法
本章小结
习题1
第2章 编程基础
2.1 Python语言
2.1.1 Python语言简介
2.1.2 Python内置函数与标准库
2.2 Python中的NumPy
2.2.1 多维数组
2.2.2 随机数组
2.3 Python中的Matplotlib
2.3.1 创建线形图
2.3.2 创建其他图
2.4 PyTorch基础
2.4.1 PyTorch中的Tensor
2.4.2 搭建一个简易神经网络
2.4.3 自动梯度
2.4.4 模型搭建和参数优化
本章小结
习题2
第3章 医学影像处理
3.1 医学影像基础
3.1.1 图像像素、空间分辨率和亮度分辨率
3.1.2 数字图像类型
3.1.3 图像文件格式
3.2 医学影像类别
3.2.1 X射线图像
3.2.2 CT图像
3.2.3 MRI图像
3.2.4 超声图像
3.2.5 核素图像
3.2.6 OCTA图像
3.3 医学影像基本处理技术
3.3.1 医学影像的几何变换
3.3.2 医学影像的分割
3.3.3 医学影像的直方图增强
本章小结
习题3
第4章 卷积神经网络
4.1 卷积神经网络的组成
4.1.1 卷积层
4.1.2 池化层
4.1.3 激活函数
4.1.4 损失函数
4.2 经典的卷积神经网络
4.2.1 LeNet
4.2.2 AlexNet
4.2.3 VGGNet
4.2.4 GoogLeNet
4.2.5 ResNet
4.2.6 Xception
4.3 评价指标
4.3.1 错误率与准确率
4.3.2 查准率、查全率与F1分数
4.3.3 ROC与AUC
4.3.4 代价敏感错误率和代价曲线
本章小结
习题4
第2篇 实际应用篇
第5章 常见的医学影像任务
5.1 疾病诊断
5.1.1 常见的疾病诊断任务
5.1.2 常用的疾病诊断方法
5.2 医学影像检测
5.2.1 常见的医学影像检测任务
5.2.2 常用的医学影像检测方法
5.2.3 常用的医学影像检测性能指标
5.3 医学影像分割
5.3.1 常见的医学影像分割任务
5.3.2 常用的医学影像分割方法
5.3.3 常用的医学影像分割性能指标
本章小结
习题5
第3篇 案例篇
第6章 乳腺超声影像肿瘤良恶性诊断
6.1 案例介绍
6.1.1 乳腺癌的危害
6.1.2 乳腺超声影像的优势与缺陷
6.1.3 乳腺癌诊断方式
6.1.4 乳腺癌诊断的发展
6.2 高质量乳腺超声影像数据集
6.2.1 乳腺超声影像
6.2.2 超声影像标注
6.2.3 含噪声的超声影像恢复方法
6.2.4 数据集的构成分析
6.3 肿瘤良恶性诊断模型搭建
6.3.1 模型设计
6.3.2 算法实现
6.4 实验结果评价
本章小结
习题6
第7章 超声影像乳腺肿瘤检测
7.1 目标检测算法介绍
7.1.1 FasterR-CNN算法
7.1.2 SSD算法
7.1.3 YOLOV3算法
7.1.4 CornerNet算法
7.2 检测数据集制作流程(PascalVOC格式)
7.2.1 PascalVOC格式
7.2.2 数据集制作流程
7.3 评价指标与实现方法
7.4 乳腺肿瘤检测实验结果与分析
本章小结
习题7
第8章 基于OCTA图像的糖尿病诊断分析
8.1 案例介绍
8.2 OCTA数据介绍
8.2.1 OCTA图像介绍
8.2.2 数据集下载
8.2.3 数据预处理
8.3 OCTA糖尿病诊断算法
8.3.1 模型搭建
8.3.2 模型训练
8.4 OCTA糖尿病案例评价
本章小结
习题8
第9章 基于胸部CT的肺部疾病智能诊断
9.1 多种肺部疾病的影像学表现
9.2 案例介绍
9.3 建立肺CT医学影像数据集
9.3.1 数据采集
9.3.2 实验数据集的划分
9.3.3 病灶标注数据集的制作
9.3.4 读取数据集脚本的编写
9.4 肺CT医学影像分类网络的搭建
9.4.1 实验环境
9.4.2 模型搭建
9.4.3 神经网络训练验证
9.5 肺CT医学影像病灶识别网络
9.5.1 FasterR-CNN网络原理
9.5.2 FasterR-CNN框架搭建
9.6 实验结果评价
本章小结
习题9
参考文献
同类热销排行榜
- 目送/人生三书
- 21世纪的《背影》 + 感人至深的“生死笔记”+ 龙应台亲手摄影 + 跨三代共读的人生之书! 华人世界率性犀利的一枝笔,龙应台独家...
- 顾城的诗(金版)(精)/蓝星诗库
- 人类群星闪耀时(插图本)/译林名著精选
- 牛津高阶英汉双解词典(附光盘第8版)(精)
- 文化苦旅(新版)
- 摆渡人
- 解忧杂货店(精)
- 骆驼祥子
- 曾国藩(又笨又慢平天下)
- 查令十字街84号(珍藏版)(精)
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...