-
内容大纲
本书的主题是众多学科的基础,因此对低年级数学研究生,以及数学、物理学、化学、生物学、工程学甚至经济学专业的高年级本科生都有用。本书包括8章,第1章和第2章处理了欧几里得空间的基本的几何与拓扑内容;第3章处理了微分学内容;第4,5和6章是关于多变量的积分学的内容。本书有两个新奇的特征:第7章是基本但非常重要的常微分方程和二阶经典偏微分方程的相关内容;第8章深入介绍了变分法,它被视为类似于多变量微积分中常见的极值问题。 -
作者介绍
-
目录
Preface and Acknowledgments
Notations
1 Basic Features of Euclidean Space, Rn
1.1 Real numbers
1.1.1 Convergence of sequences of real numbers
1.2 Rn as a vector space
1.3 Rn as an inner product space
1.3.1 The inner product and norm in Rn
1.3.2 Orthogonality
1.3.3 The cross product in R3
1.4 Rn as a metric space
1.5 Convergence of sequences in Rn
1.6 Compactness
1.7 Equivalent norms (*)
1.8 Solved problems for Chapter 1
2 Functions on Euclidean Spaces
2.1 Functions from Rn to Rm
2.2 Limits of functions
2.3 Continuous functions
2.4 Linear transformations
2.5 Continuous functions on compact sets
2.6 Connectedness and convexity
2.6.1 Connectedness
2.6.2 Path-connectedness
2.6.3 Convex sets
2.7 Solved problems for Chapter 2
3 Differential Calculus in Several Variables
3.1 Differentiable functions
3.2 Partial and directional derivatives, tangent space
3.3 Homogeneous functions and Euler's equation
3.4 The mean value theorem
3.5 Higher order derivatives
3.5.1 The second derivative
3.6 Taylor's theorem
3.6.1 Taylor's theorem in one variable
3.6.2 Taylor's theorem in several variables
3.7 Maxima and minima in several variables
3.7.1 Local extrema for functions in several variables
3.7.2 Degenerate critical points
3.8 The inverse and implicit function theorems
3.8.1 The Inverse Function theorem
3.8.2 The Implicit Function theorem
3.9 Constrained extrema, Lagrange multipliers
3.9.1 Applications to economics
3.10 Functional dependence
3.11 Morse's leInma (*)
3.12 Solved problems for Chapter 3
4 Integral Calculus in Several Variables
4.1 The integral in Rn
4.1.1 Darboux sums. Integrability condition
4.1.2 The integral over a bounded set
4.2 Properties of multiple integrals
4.3 Fubini's theorern
4.3.1 Center of mass, centroid, moment of inertia
4.4 Smooth Urysohn's lemma and partition of unity (*)
4.5 Sard's theorem (*)
4.6 Solved problems for Chapter 4
5 Change of Variables Formula, Improper Multiple Integrals
5.1 Change of variables formula
5.1.1 Change of variables; linear case
5.1.2 Change of variables; the general case
5.1.3 Applications, polar and spherical coordinates
5.2 Improper multiple integrals
5.3 Functions defined by integrals
5.3.1 Functions defined by improper integrals
5.3.2 Convolution of functions
5.4 The Weierstrass approximation theorem (*)
5.5 The Fourier transform (*)
5.5.1 The Schwartz space
5.5.2 The Fourier transform on Rn
5.6 Solved problems for Chapter 5
6 Line and Surface Integrals
6.1 Arc-length and Line integrals
6.1.1 Paths and curves
6.1.2 Line integrals
6.2 Conservative vector fields and Poincare's lemma
6.3 Surface area and surface integrals
6.3.1 Surface area
6.3.2 Surface integrals
6.4 Green's theorem and the divergence theorem in R2
6.4.1 The divergence theorem in R2
6.5 The divergence and curl
6.6 Stokes' theorem
6.7 The divergence theorem in R3
6.8 Differential forms (*)
6.9 Vector fields on spheres and Brouwer fixed point theorem (*)
6.9.1 Tangential vector fields on spheres
6.9.2 The Brouwer fixed point theorem
6.10 Solved problems for Chapter 6
7 Elements of Ordinary and Partial Differential Equations
7.1 Introduction
7.2 First order differential equations
7.2.1 Linear first order ODE
7.2.2 Equations with variables separated
7.2.3 Homogeneous equations
7.2.4 Exact equations
7.3 Picard's theorem (*)
7.4 Second order differential equations
7.4.1 Linear second order ODE with constant coefficients
7.4.2 Special types of second order ODE; reduction of order
7.5 Higher order ODE and systems of ODE
7.6 Some more advanced topics in ODE (*)
7.6.1 The method of Frobenius; second order equations with variable coefficients
7.6.2 The Hermite equation
7.7 Partial differential equations
7.8 Second order PDE in two variables
7.8.1 Classification and general solutions
7.8.2 Boundary value problems for the wave equation
7.8.3 Boundary value problems for Laplace's equation
7.8.4 Boundary value problems for the heat equation
7.8.5 A note on Fourier series
7.9 The Fourier transform method (*)
7.10 Solved problems for Chapter 7
8 An Introduction to the Calculus of Variations
8.1 Simple variational problems
8.1.1 Some classical problems
8.1.2 Sufficient conditions
8.2 Generalizations
8.2.1 Geodesics on a Riemannian surface
8.2.2 The principle of least action
8.3 Variational problems with constraints
8.4 Multiple integral variational problems
8.4.1 Variations of double integrals
8.4.2 The case of n variables
8.5 Solved problems for Chapter 8
Appendix A Countability and Decimal Expansions
Appendix B Calculus in One Variable
B.1 Differential calculus
B.2 Integral calculus
B.2.1 Complex-valued functions
B.3 Series
Appendix C Uniform Convergence
C.1 The Stone-Weierstrass theorem
Appendix D Linear Algebra
Bibliography
Index
同类热销排行榜
- 目送/人生三书
- 21世纪的《背影》 + 感人至深的“生死笔记”+ 龙应台亲手摄影 + 跨三代共读的人生之书! 华人世界率性犀利的一枝笔,龙应台独家...
- 顾城的诗(金版)(精)/蓝星诗库
- 人类群星闪耀时(插图本)/译林名著精选
- 牛津高阶英汉双解词典(附光盘第8版)(精)
- 文化苦旅(新版)
- 摆渡人
- 解忧杂货店(精)
- 骆驼祥子
- 曾国藩(又笨又慢平天下)
- 查令十字街84号(珍藏版)(精)
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...