欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 统计学习理论的本质(第2版英文版香农信息科学经典)
      • 作者:(美)弗拉基米尔·万普尼克|责编:陈亮
      • 出版社:世图出版公司
      • ISBN:9787519296858
      • 出版日期:2023/01/01
      • 页数:314
    • 售价:39.6
  • 内容大纲

        统计学习理论是针对小样本情况研究统计学习规律的理论,是传统统汁学的重要发展和补充,为研究有限样本情况下机器学习的理论和方法提供了理论框架,其核心思想是通过控制学习机器的容量实现对推广能力的控制。在这一理论中发展出的支持向量机方法是一种新的通用学习机器,较以往方法表现出很多理论和实践上的优势。本书是该领域的权威著作,由该领域的创立者来讲述统计学习理论的本质,着重介绍了统计学习理论和支持向量机的关键思想、结论和方法,以及该领域的新进展。
  • 作者介绍

  • 目录

    Preface to the Second Edition
    Preface to the First Edition
    Introduction: Four Periods in the Research of the Learning Problem
      Rosenblatt's Perceptron (The 1960s)
      Construction of the Fundamentals of Learning Theory(The 1960s–1970s)
      Neural Networks (The 1980s)
      Returning to the Origin (The 1990s)
    Chapter 1  Setting of the Learning Problem
      1.1  Function Estimation Model
      1.2  The Problem of Risk Minimization
      1.3  Three Main Learning Problems
        1.3.1  Pattern Recognition
        1.3.2  Regression Estimation
        1.3.3  Density Estimation (Fisher–Wald Setting)
      1.4  The General Setting of the Learning Problem
      1.5  The Empirical Risk Minimization (ERM) Inductive Principle
      1.6  The Four Parts of Learning Theory
      1.7  The Classical Paradigm of Solving Learning Problems
        1.7.1  Density Estimation Problem (MaximumLikelihood Method)
        1.7.2  Pattern Recognition (Discriminant Analysis) Problem
        1.7.3  Regression Estimation Model
        1.7.4  Narrowness of the ML Method
      1.8  Nonparametric Methods of Density Estimation
        1.8.1  Parzen's Windows
        1.8.2  The Problem of Density Estimation Is Ill-Posed
      1.9  Main Principle for Solving Problems Using a Restricted Amount of Information
      1.10  Model Minimization of the Risk Based on Empirical Data
        1.10.1  Pattern Recognition
        1.10.2  Regression Estimation
        1.10.3  Density Estimation
      1.11  Stochastic Approximation Inference
    Chapter 2  Consistency of Learning Processes
      2.1  The Classical Definition of Consistency and the Concept of Nontrivial Consistency
      2.2  The Key Theorem of Learning Theory
        2.2.1  Remark on the ML Method
      2.3  Necessary and Sufficient Conditions for Uniform Two-Sided Convergence
        2.3.1  Remark on Law of Large Numbers and Its Generalization
        2.3.2  Entropy of the Set of Indicator Functions
        2.3.3  Entropy of the Set of Real Functions
        2.3.4  Conditions for Uniform Two-Sided Convergence
      2.4  Necessary and Sufficient Conditions for Uniform One-Sided Convergence
      2.5  Theory of Nonfalsifiability
        2.5.1  Kant's Problem of Demarcation and Popper's Theory of Nonfalsifiability
      2.6  Theorems on Nonfalsifiability
        2.6.1  Case of Complete (Popper's) Nonfalsifiability
        2.6.2  Theorem on Partial Nonfalsifiability
        2.6.3  Theorem on Potential Nonfalsifiability
      2.7  Three Milestones in Learning Theory Informal Reasoning and Comments
      2.8  The Basic Problems of Probability Theory and Statistics
        2.8.1  Axioms of Probability Theory

      2.9  Two Modes of Estimating a Probability Measure
      ……
    Chapter 3  Bounds on the Rate of Convergence ofLearning Processes
    Chapter 4  Controlling the Generalization Ability of Learning Processes
    Chapter 5  Methods of Pattern Recognition
    Chapter 6  Methods of Function Estimation
    Chapter 7  Direct Methods in Statistical Learning Theory
    Chapter 8  The Vicinal Risk Minimization Principle and the SVMs
    Chapter 9  Conclusion: What Is Important inLearning Theory?
    References
    Index

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>