欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 索末菲理论物理教程(力学英文版)(精)
      • 作者:(德)阿诺德·索末菲|责编:陈亮
      • 出版社:世图出版公司
      • ISBN:9787519296780
      • 出版日期:2023/01/01
      • 页数:289
    • 售价:43.6
  • 内容大纲

        本书是“索末菲理论物理教程”的第一卷,主题是力学。“索末菲理论物理教程”包括力学、变形介质力学、电动力学、光学、热力学与统计物理、物理学中的偏微分方程六卷,是作者给Muenchen大学和理工学院物理专业大三、大四学生讲课的手稿整理而成的。索末菲老师教书是物理数学融合在一起的,关键是他还能实验物理和理论物理一起教。索末菲的教学应该是深刻地影响到了不少人。他的教学非同于一般的教书匠,其教科书里融入了自己的理解还有自己对学术的贡献。索末菲对物理学的贡献是多方面的,即便面对爱因斯坦这样的人物,也未必逊色多少。
  • 作者介绍

        阿诺德·索末菲(Arnold Sommerfeld,1868-1951),Sommerfeld是德国伟大的理论物理学家、应用数学家、流体力学家、教育家、原子物理与量子物理的创始人之一。他对理论物理多个领域,包括力学、光学、热力学、统计物理、原子物理、固体物理(包括金属物理)等有重大贡献,在偏微分方程、数学物理等应用数学领域也有重要贡献。他引进了第二量子数(角量子数)、第四量子数(自旋量子数)和精细结构常数,等等。20世纪最伟大的物理学家之一Planck在获得1918年度诺贝尔物理学奖的颁奖典礼的仪式上的演讲中指出:“Sommerfeld…便可以得到一个重要公式,这个公式能够解开氢与氢光谱的精细结构之谜,而且现在最精确的测量……一般地也能通过这个公式来解释……这个成就完全可以和海王星的著名发现相媲美。早在人类看到这颗行星之前Leverrier就计算出它的存在和轨道。”     Sommerfeld思想深刻,研究成果影响深远。例如,他去世后发展起来的数值广义相对论和新近崛起的引力波理论研究中,还引用“Sommerfeld条件”,该条件在求解中发挥了重要作用。这再次彰显了他的科学工作的巨大价值。
  • 目录

    FOREWORD TO SOMMERFELD'S COURSE BY P. P. EWALD
    PREFACE TO THE FIRST EDITION
    INTRODUCTION
    CHAPTER Ⅰ.  MECHANICS OF A PARTICLE
      1.Newton's Axioms
      2.Space, Time and Reference Systems
      3.Rectilinear Motion of a Mass Point
        Examples:
        (1)Free Fall Near Earth's Surface (Falling Stone)
        (2)Free Fall From a Great Distance (Meteor)
        (3)Free Fall in Air
        (4)Harmonic Oscillations
        (5)Collision of Two Particles
      4.Variable Masses
      5.Kinematics and Statics of a Single Mass Point in a Plane and in Space
        (1)Plane Kinematics
        (2)The Concept of Moment in Plane Statics and Kinematics
        (3)Kinematics in Space
        (4)Statics in Space; Moment of Force About a Point and About an Axis
      6.Dynamics (Kinetics) of the Freely Moving Mass Point; Kepler Problem; Concept of Potential Energy
        (1)Kepler Problem with Fixed Sun
        (2)Kepler Problem Including Motion of the Sun
        (3)When Does a Force Field Have a Potential?
    CEAPTER Ⅱ.  MECHANICS OF SYSTEMS, PRINCIPLE OF VIRTUAL WORK, ANDD'ALEMBERT'S PRINCIPLE
      7.Degrees of Freedom and Virtual Displacements of a Mechanical Syatem;Holonomic and Non-holonomic Constraints
      8.The Principle of Virtual Work.
      9.Illustrations of the Principle of Virtual Work
        (1)The Lever
        (2)Inverse of the Lever: Cyclist, Bridge
        (3)The Block and Tackle
        (4)The Drive Mechanism of a Piston Engine
        (5)Moment of a Force About an Axis and Work in a Virtual Rotation
      10.D'Alembert's Principle; Introduction of Inertial Forces
      11.Application of d'Alembert's Principle to the Simplest Problems
        (1)Rotation of a Rigid Body About a Fixed Axis
        (2)Coupling of Rotational and Translational Motion
        (3)Sphere Rolling on Inclined Plane
        (4)Mass Guided Along Prescribed Trajectory
      12.Lagrange's Equations of the First Kind
      13.Equations of Momentum and of Angular Momentum
        (1)Equation of Momentum
        (2)Equation of Angular Momentum
        (3)Proof Using the Coordinate Method
        (4)Examples
        (6)General Rule on the Number of Integrations Feasible in a Closed
        (5)Mass Balancing of Marine Engines Syetem
      14.The Laws of Friction
        (1)Static Friction
        (2)Sliding Friction
    CHAPTER Ⅲ.  OSCILLATION PROBLEMS

      15.The Simple Pendulum
      16.The Compound Pendulum
        Supplement: A Rule Concerning Moments of Inertia
      17.The Cycloidal Pendulurm
      18.The Spherical Pendulum
      19.Various Types of Oscillations. Free and Forced, Damp and Undamped Oscillations
      20.Sympathetic Oscillations
      21.The Double Pendulum
    CHAPTER Ⅳ.  THE RIGID BODY
      22.Kinematics of Rigid Bodies
      23.Statics of Rigid Bodies
        (1)The Conditions of Equilibrium
        (2)Equipollence; the Reduction of Force Systems
        (3)Change of Reference Point
        (4)Comparison of Kinematics and Statics
        Supplement: Wrenches and Screw Displacements
      24.Linear and Angular Momentum of a Rigid Body. Their Connection with Linear and Angular Velocity
      25.Dynamics of a Rigid Body. Survey of its Forms of Motion
        (1)The Spherical Top Under No Forces
        (2)The Symmetrical Top Under No Forces
        (3)The Unsymmetrical Top Under No Forces
        (4)The Heavy Symmetrical Top
        (5)The Heavy Unsymmetrical Top
      26.Euler's Equations. Quantitative Treatment of the Top Under No Forces
        (1)Euler's Equations of Motion
        (2)Regular Precession of the Symmetrical Top Under No Forces and Euler's Theory of Polar Fluctuations
        (3)Motion of an Unsymmetrical Top Under No Forces. Examination of its Permanent Rotations as to Stability
      27.Demonstration Experiments Illustrating the Theory of the Spinning Top; Practical Applications
        (1)The Gyrostabilizer and Related Topics
        (2)The Gyrocompass
        (3)Gyroscopic Effects in Railroad Wheels and Bicycles
        Supplement: The Mechanics of Billiards
          (a)High and Low Shots, 158—(b) Follow Shots and Draw Shots, 159—
          (c)Trajectories with " English " Under Horizontal Impact, 160—
          (d)Parabolic Path Due to Shot with Vertical Component, 160
    CHAPTER Ⅴ.  RELATIVE MOTION
      28.Derivation of the Coriolis Force in a Special Case
      29.The General Differential Equations of Relative Motion
      30.Free Fall on the Rotating Earth; Nature of the Gyroscopic Terms
      31.Foucault's Pendulum
      32.Lagrange's Case of the Three-Body Problem
    CHAPTER Ⅵ.  INTEGRAL VARIATIONAL PRINCIPLES OF MECHANICS AND LAGRANGE'S EQUATIONS FOR GENERALIZED COORDINATES
      33.Hamilton's Principle
      34.Lagrange's Equations for Generalized Coordinates
      35.Examples Illustrating the Use of Lagrange's Equations
        (1)The Cycloidal Pendulum
        (2)The Spherical Pendulum
        (3)The Double Pendulum
        (4)The Heevy Symmetrical Top
      36.An Alternate Derivation of Lagrange's Equations

      37.The Principle of Least Action
    CHAPTER Ⅶ.  DIFFERENTIAL VARIATIONAL PRINCIPLES OF MECHANICS
      38.Gauss' Principle of Least Constraint
      39.Hertz's Principle of Least Curvature
      40.A Digression on Geodesics
    CHAPTER Ⅷ.  THE THEORY OF HAMILTON
      41.Hamilton's Equations
        (1)Derivation of Hamilton's Equations from Lagrange's Equations
        (2)Derivation of Hamilton's Equations from Hamilton's Principle
      42.Routh's Equations and Cyclic Systems
      43.The Differential Equations for Non-Holonomic Velocity Parameters
      44.The Hamilton-Jacobi Equation
        (1)Conservative Systems
        (2)Dissipative Systems
      45.Jacobi's Rule on the Integration of the Hamilton-Jacobi Equation
      46.Classical and Quantum-Theoretical Treatment of the Kepler Problem
    PROBLEMS
      FOR CHAPTER Ⅰ
        Ⅰ.1, Ⅰ.2, Ⅰ.3. Elastic collision
        Ⅰ.4.Inelastic collision between an electron and an atom
        Ⅰ.5.Rocket to the moon
        Ⅰ.6.Water drop falling through saturated atmosphere
        Ⅰ.7.Falling chain
        Ⅰ.8.Falling rope
        Ⅰ.9.Acceleration of moon due to earth's attraction
        Ⅰ.10.The torque as vector quantity
        Ⅰ.11.The hodograph of planetary motion
        Ⅰ.12.Parallel beam of electrons passing through the field of an ion Envelope of the trajectories
        Ⅰ.13.Elliptical trajectory under the influence of a central force directly proportional to the distance
        Ⅰ.14.Nuclear disintegration of lithium
        Ⅰ.15.Central collisions between neutrons and atomic nuclei; effect of a block of paraffin
        Ⅰ.16.Kepler's equation
      FOR CHAPTER Ⅱ
        Ⅱ.1.Non-holonomic conditions of a rolling wheel
        Ⅱ.2.Approximate design of a flywheel for a double-acting one-oylinder steam engine
        Ⅱ.3.Centrifugal force under increased rotation of the earth
        Ⅱ.4.Poggendorff's experiment
        Ⅱ.5.Accelerated inclined plane
        Ⅱ.6.Products of inertia for the uniform rotation of an unsyrmmetrical bodyabout an axis
        Ⅱ.7.Theory of the Yo-yo
        Ⅱ.8.Particle moving on the surface of a sphere
      FOR CHAPTER Ⅲ
        Ⅲ.1.Spherical pendulum under infinitesimal oscillations
        Ⅲ.2.Position of the resonance peak of forced damped oscillations
        Ⅲ.3.The galvanometer
        Ⅲ.4.Pendulum under forced motion of its point of suspension
        Ⅲ.5.Practical arrangement of coupled pendulums
        Ⅲ.6.The oscillation quencher
      FOR CHAPTER Ⅳ
        Ⅳ.1.Moments of inertia of a plane mass distribution

        Ⅳ.2.Rotation of the top about its principal axes
        Ⅳ.3.High and low shots in a billiard game. Follow shot and draw shot
        Ⅳ.4.Parabolic motion of a billiard ball
      FOB CHAPTER Ⅴ
        Ⅴ.1.Relative motion in a plane
        Ⅴ.2.Motion of a particle on a rotating straight line
        Ⅴ.3.The sleigh as the simplest example of a non-holonomic system
      FOB CHAPTER Ⅵ
        Ⅵ.1.Example illustrating Hamilton's principle
        Ⅵ.2.Relative motion in a plane and motion on a rotating straight line
        Ⅵ.3.Free fall on the rotating earth and Foucault's pendulum
        Ⅵ.4."Wobbling" of a cylinder rolling on a plane support
        Ⅵ.5.Differential of an automobile
    HINTS FOR SOLVING THE PROBLEMS
    INDEX

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>