欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 模式识别的马尔可夫模型(第2版英文版香农信息科学经典)
      • 作者:(德)格诺特·芬克|责编:陈亮//刘叶青
      • 出版社:世图出版公司
      • ISBN:9787519296940
      • 出版日期:2023/01/01
      • 页数:276
    • 售价:35.6
  • 内容大纲

        本书为修订和扩展的新版本,新版里包括更为详细的EM算法处理、有效的近似维特比训练程序描述,和基于n-最佳搜索的困惑测度和多通解码覆盖的理论推导。为了支持对马尔可夫模型理论基础的讨论,还特别强调了实际算法的解决方案。具体来说,本书的特点如下:介绍了马尔可夫模型的形式化框架;涵盖了概率量的鲁棒处理;提出了具体应用领域隐马尔可夫模型的配置方法;描述了高效处理马尔可夫模型的重要方法,以及模型对不同任务的适应性;研究了在复杂解空间中由马尔可夫链和隐马尔可夫模型联合应用而产生的搜索算法;回顾了马尔可夫模型的。
  • 作者介绍

  • 目录

      1  Introduction
        1.1  Thematic Context
        1.2  Functional Principles of Markov Models
        1.3  Goal and Structure of the Book
      2  Application Areas
        2.1  Speech
        2.2  Writing
        2.3  Biological Sequences
        2.4  Outlook
    Part I  Theory
      3  PartFoundations of Mathematical Statistics
        3.1  Random Experiment, Event, and Probability
        3.2  Random Variables and Probability Distributions
        3.3  Parameters of Probability Distributions
        3.4  Normal Distributions and Mixture Models
        3.5  Stochastic Processes and Markov Chains
        3.6  Principles of Parameter Estimation
          3.6.1  Maximum Likelihood Estimation
          3.6.2  Maximum a Posteriori Estimation
        3.7  Bibliographical Remarks
      4  PartVector Quantization and Mixture Estimation
        4.1  Definition
        4.2  Optimality
          4.2.1  Nearest-Neighbor Condition
          4.2.2  Centroid Condition
        4.3  Algorithms for Vector Quantizer Design
          4.3.1  Lloyd's Algorithm
          4.3.2  LBG Algorithm
          4.3.3  k-Means Algorithm
        4.4  Estimation of Mixture Density Models
          4.4.1  EM Algorithm
          4.4.2  EM Algorithm for Gaussian Mixtures
        4.5  Bibliographical Remarks
      5  Hidden Markov Models
        5.1  Definition
        5.2  Modeling Outputs
        5.3  Use Cases
        5.4  Notation
        5.5  Evaluation
          5.5.1  The Total Output Probability
          5.5.2  Forward Algorithm
          5.5.3  The Optimal Output Probability
        5.6  Decoding
          5.6.1  Viterbi Algorithm
        5.7  Parameter Estimation
          5.7.1  Foundations
          5.7.2  Forward-Backward Algorithm
          5.7.3  Training Methods
          5.7.4  Baum-Welch Algorithm
          5.7.5  Viterbi Training

          5.7.6  Segmental k-Means Algorithm
          5.7.7  Multiple Observation Sequences
        5.8  Model Variants
          5.8.1  Alternative Algorithms
          5.8.2  Alternative Model Architectures
        5.9  Bibliographical Remarks
      6  n-Gram Models
        6.1  Definition
        6.2  Use Cases
        6.3  Notation
        6.4  Evaluation
        6.5  Parameter Estimation
          6.5.1  Redistribution of Probability Mass
          6.5.2  Discounting
          6.5.3  Incorporation of More General Distributions
          6.5.4  Interpolation
          6.5.5  Backing off
          6.5.6  Optimization of Generalized Distributions
        6.6  Model Variants
          6.6.1  Category-Based Models
          6.6.2  Longer Temporal Dependencies
        6.7  Bibliographical Remarks
    Part II  Practice
      7  Computations with Probabilities
        7.1  Logarithmic Probability Representation
        7.2  Lower Bounds for Probabilities
        7.3  Codebook Evaluation for Semi-continuous HMMs
        7.4  Probability Ratios
      8  Configuration of Hidden Markov Models
        8.1  Model Topologies
        8.2  Modularization
          8.2.1  Context-Independent Sub-word Units
          8.2.2  Context-Dependent Sub-word Units
        8.3  Conpound Models
        8.4  Profile HMMs
        8.5  Modeling Outputs
      9  Robust Parameter Estimation
        9.1  Feature Optimization
          9.1.1  Decorrelation
          9.1.2  Principal Component Analysis I
          9.1.3  Whitening
          9.1.4  Dimensionality Reduction
          9.1.5  Principal Component Analysis IⅡ
          9.1.6  Linear Discriminant Analysis
        9.2  Tying
          9.2.1  Sub-model Units
          9.2.2  State Tying
          9.2.3  Tying in Mixture Models
        9.3  Initialization of Parameters
      10  Efficient Model Evaluation

        10.1  Efficient Evaluation of Mixture Densities
        10.2  Efficient Decoding of Hidden Markov Models
          10.2.1  Beam Search Algorithm
        10.3  Efficient Generation of Recognition Results
          10.3.1  First-Best Decoding of Segmentation Units
          10.3.2  Algorithms for N-Best Search
        10.4  Efficient Parameter Estimation
          10.4.1  Forward–Backward Pruning
          10.4.2  Segmental Baum-Welch Algorithm
          10.4.3  Training of Model Hierarchies
        10.5  Tree-Like Model Organization
          10.5.1  HMM Prefix Trees
          10.5.2  Tree-Like Representation for n-Gram Models
      11  Model Adaptation
        11.1  Basic Principles
        11.2  Adaptation of Hidden Markov Models
          11.2.1  Maximum-Likelihood Linear-Regression
        11.3  Adaptation of n-Gram Models
          11.3.1  Cache Models
          11.3.2  Dialog-Step Dependent Models
          11.3.3  Topic-Based Language Models
      12  Integrated Search Methods
        12.1  HMM Networks
        12.2  Multi-pass Search
        12.3  Search Space Copies
          12.3.1  Context-Based Search Space Copies
          12.3.2  Time-Based Search Space Copies
          12.3.3  Language-Model Look-Ahead
        12.4  Time~Synchronous Parallel Model Decoding
          12.4.1  Generation of Segment Hypotheses
          12.4.2  Language-Model-Based Search
    Part III  Systems
      13  Speech Recognition
        13.1  Recognition System of RWTH Aachen University
          13.1.1  Feature Extraction
          13.1.2  Acoustic Modeling
          13.1.3  Language Modeling
          13.1.4  Search
        13.2  BBN Speech Recognizer BYBLOS
          13.2.1  Feature Extraction
          13.2.2  Acoustic Modeling
          13.2.3  Language Modeling
          13.2.4  Search
        13.3  ESMERALDA
          13.3.1  Feature Extraction
          13.3.2  Acoustic Modeling
          13.3.3  Statistical and Declarative Language Modeling
          13.3.4  Incremental Search
      14  Handwriting Recognition
        14.1  Recognition System by BBN

          14.1.1  Preprocessing
          14.1.2  Feature Extraction
          14.1.3  Script Modeling
          14.1.4  Language Modeling and Search
        14.2  Recognition System of RWTH Aachen University
          14.2.1  Preprocessing
          14.2.2  Feature Extraction
          14.2.3  Script Modeling
          14.2.4  Language Modeling and Search
        14.3  ESMERALDA Offline Recognition System
          14.3.1  Preprocessing
          14.3.2  Feature Extraction
          14.3.3  Handwriting Model
          14.3.4  Language Modeling and Search
        14.4  Bag-of-Features Hidden Markov Models
      15  Analysis of Biological Sequences
        15.1  HMMER
          15.1.1  Model Structure
          15.1.2  Parameter Estimation
          15.1.3  Interoperability
        15.2  SAM
        15.3  ESMERALDA
          15.3.1  Feature Extraction
          15.3.2  Statistical Models of Proteins
    References
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>