欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 微分几何--曲线曲面和流形(第3版英文版)(精)/美国数学会经典影印系列
      • 作者:(德)沃尔夫冈·库内尔//(美)布鲁斯·亨特|责编:和静
      • 出版社:高等教育
      • ISBN:9787040593150
      • 出版日期:2023/03/01
      • 页数:402
    • 售价:67.6
  • 内容大纲

        这本精心编写的教材介绍了微分几何的美妙思想和结果。前半部分介绍了曲线和曲面的几何,为一般理论提供了大量的动机和直觉。第二部分研究一般流形的几何,特别强调了联络和曲率。文中配有许多图表和示例。读者阅读本书前需要先学习本科的数学分析和线性代数。新版做了很多改进,包括更多的图表和习题,并为很多选定习题提供了解答。
  • 作者介绍

  • 目录

    Preface to the English Edition
    Preface to the German Edition
    Chapter 1.  Notations and Prerequisites from Analysis
    Chapter 2.  Curves in IRn
      2A Frenet curves in IRn
      2B Plane curves and space curves
      2C Relations between the curvature and the torsion
      2D The Frenet equations and the fundamental theorem of thelocal theory of curves
      2E Curves in Minkowski space IR31
      2F The global theory of curves
      Exercises
    Chapter 3.  The Local Theory of Surfaces
      3A Surface elements and the first fundamental form
      3B The Gauss map and the curvature of surfaces
      3C Surfaces of rotation and ruled surfaces
      3D Minimal surfaces
      3E Surfaces in Minkowski space IR31
      3F Hypersurfaces in IRn+1
      Exercises
    Chapter 4.  The Intrinsic Geometry of Surfaces
      4A The covariant derivative
      4B Parallel displacement and geodesics
      4C The Gauss equation and the Theorema Egregium
      4D The fundamental theorem of the local theory of surfaces
      4E The Gaussian curvature in special parameters
      4F The Gauss-Bonnet Theorem
      4G Selected topics in the global theory of surfaces
      Exercises
    Chapter 5.  Riemannian Manifolds
      5A The notion of a manifold
      5B The tangent space
      5C Riemannian metrics
      5D The Riemannian connection
    Chapter 6.  The Curvature Tensor
      6A Tensors
      6B The sectional curvature
      6C The Ricci tensor and the Einstein tensor
    Chapter 7.  Spaces of Constant Curvature
      7A Hyperbolic space
      7B Geodesics and Jacobi fields
      7C The space form problem
      7D Three-dimensional Euclidean and spherical space forms
      Exercises
    Chapter 8.  Einstein Spaces
      8A The variation of the Hilbert-Einstein functional
      8B The Einstein field equations
      8C Homogenous Einstein spaces
      8D The decomposition of the curvature tensor
      8E The Weyl tensor
      8F Duality for four-manifolds and Petrov typesExercises

    Solutions to selected exercises
    Bibliography
    List of notation
    Index

同类热销排行榜