欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 高等数学(上英文版第2版21世纪高等学校双语教材)
      • 作者:编者:陈文彦//马红铝|责编:吉雄飞
      • 出版社:东南大学
      • ISBN:9787576613896
      • 出版日期:2024/05/01
      • 页数:298
    • 售价:20.72
  • 内容大纲

        本书是为响应东南大学国际化需求,根据国家教育部非数学专业数学基础课教学指导分委员会制定的《工科类本科数学基础课程教学基本要求》,并结合东南大学多年教学改革实践经验编写的全英文教材。全书分为上、下两册,此为上册,主要内容包括极限和连续、一元函数微分学、一元函数积分学、常微分方程等。本书按国内高等数学教材体系进行编排,相比国外教材要简洁,同时兼顾美国教材重视应用、便于自学的特点。本书可作为高等院校工科类专业本科生学习高等数学的英文教材,也可供其他专业学生选用和相关科技工作者参考。
  • 作者介绍

  • 目录

    Chapter 1  Limit and Continuity
      1.1  Functions
        1.1.1  Mopping
        1.1.2  Function of Single Vorioble
        1.1.3  Elementory Functions ond Hyperbolic Functions
        Exercise 1.1
      1.2  The Concept of Limits and its Properties
        1.2.1  Limits of Sequence
        1.2.2  Limits of Functions
        1.2.3  Properties of Limits
        Exercise 1.2
      1.3  Rules for Finding Limits
        1.3.1  Operation on Limits
        1.3.2  Limits Theorem
        1.3.3  Two Important Special Limits
        Exercise 1.3
      1.4  Infinitesimal and Infinite
        1.4.1  Infinitesimal
        1.4.2  Infinite
        1.4.3  Comparison between Infinitesimal
        Exercise 1.4
      1.5  Continuous Function
        1.5.1  Continuity
        1.5.2  Continuity of Elementary Functions
        1.5.3  Discontinuity
        1.5.4  Theorems about Continuous Functions on a Closed Interval
        Exercise 1.5
      Chapter Review Exercise
    Chapter 2  Differentiation
      2.1  The Derivative
        2.1.1  Two Problems with one Theme
        2.1.2  Definition of the Derivative
        2.1.3  Geometric Interpretation of the Derivative
        2.1.4  The Relationship between Differentiability and Continuity
        Exercise 2.1
      2.2  Finding Rules for Derivative
        2.2.1  Derivative of Basic Elementary Functions
        2.2.2  Derivative of Arithmetic Combination
        2.2.3  The Derivative Rule for Inverses
        2.2.4  Derivative of Composition
        2.2.5  Implicit Differentiation
        2.2.6  Parametric Differentiation
        2.2.7  Related Rates of Change
        Exercise 2.2
      2.3  Higher-Order Derivatives
        Exercise 2.3
      2.4  Differentials
        2.4.1  Definition of Differentials
        2.4.2  Differential Rules
        2.4.3  Application of Differentials in Approximation

        Exercise 2.4
      2.5  The Mean Value Theorem
        2.5.1  Fermat's Theorem
        2.5.2  Rolle's Theorem
        2.5.3  Lagrange's Theorem
        2.5.4  Cauchy's Theorem
        Exercise 2.5
      2.6  L'Hopital's Rule
        2.6.1  Indeterminate Forms of Type 0/0
        2.6.2  Indeterminate Forms of Type ∞/∞
        2.6.3  Other Indeterminate Forms
        Exercise 2.6
      2.7  Taylor's Theorem
        Exercise 2.7
      2.8  Applications of Derivatives
        2.8.1  Monotonicity
        2.8.2  Local Extreme Values
        2.8.3  Global Maxima and Minima
        2.8.4  Concavity
        2.8.5 Asymptote
        2.8.6  Graphing Functions
        Exercise 2.8
      Chapter Review Exercise
    Chapter 3  Integration
      3.1  The Definite Integral
        3.1.1  Two Examples
        3.1.2  Properties of Definite Integral
        Exercise 3.1
      3.2  The Fundamental Theorem
        3.2.1  Newton-Leibniz Formula
        3.2.2  The First Fundamental Theorem of Calculus
        Exercise 3.2
      3.3  The Indefinite Integral
        3.3.1  The Definition of Indefinite Integral
        3.3.2  Substitution in Indefinite Integrals
        3.3.3  Indefinite Integration by Parts
        3.3.4  Indefinite Integration of Rational Functions by Partial Fractions
        Exercise 3.3
      3.4  Techniques of Definite Integration
        3.4.1  Substitution in Definite Integrals
        3.4.2  Definite Integration by Parts
        Exercise 3.4
      3.5  Applications of Definite Integrals
        3.5.1  Infinite Sum Theorem
        3.5.2  Area between Two Curves
        3.5.3  Volumes of Solids
        3.5.4  Lengths of Plane Curves
        3.5.5  Areas of Surface of Revolution
        3.5.6  Mass and Center of Mass
        3.5.7  Work and Fluid Force

        Exercise 3.5
      3.6  Improper Integrals
        3.6.1  The proposition of Improper Integrals
        3.6.2  Improper Integrals..Infinite Limits of Integration
        3.6.3  Improper Integrals: Infinite Integrands
        Exercise 3.6
      3.7  Tests for Improper Integrals
        3.7.1  Test for Improper Integrals: Infinite Limits of Integration
        3.7.2  Test for Improper Integrals.Infinite Integrands
        3.7.3  The Gamma Function
        Exercise 3.7
      Chapter Review Exercise
    Chapter 4  Differential Equations
      4.1  Differential Equations of the First Order
        4.1.1  The Concept of Differential Equations
        4.1.2  Equations with Variable Separable
        4.1.3  Homogeneous Equation
        4.1.4  First-Order Linear Differential Equations
        4.1.5  Equations Reducible to First-Order
        Exercise 4.1
      4.2  Linear Differential Equations
        4.2.1  Basic Theory of Linear Differential Equations
        4.2.2  Linear Differential Equations of the Second-Order with Constant Coefficients
        4.2.3  Euler Differential Equation
        Exercise 4.2
      4.3  Systems of Linear Differential Equations with Constant Coefficients
        Exercise 4.3
      4.4  Applications of Ordinary Derivative Equation
        Exercise 4.4
      Chapter Review Exercise
    Solutions to Selected Problem

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>