欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 统计学
      • 作者:编者:李涛//刘鑫//吴洁//冯兴东|责编:王美玲
      • 出版社:中国人民大学
      • ISBN:9787300327679
      • 出版日期:2024/05/01
      • 页数:264
    • 售价:19.6
  • 内容大纲

        本书不仅深入剖析了统计学的核心原理,而且将理论与实践紧密结合,凸显了独特的经管特色。我们侧重于将统计学知识与实际经济、管理问题相融合,通过生动的案例分析,使读者能够直观理解统计学的各项技术,并学会如何在真实场景中灵活应用。
        此外,本书紧跟数据分析的时代潮流,重点介绍了统计软件尺的使用。为了让读者能够更加自如地应对数据分析的挑战,我们特别引入了先进的编程技术,以及大语言模型这一人工智能领域的杰出成果。这不仅为读者提供了实时的问题解答和学习支持,还极大地提升了学习效率。
        值得一提的是,本书坚持“实践出真知”的教学理念。我们为学习者准备了丰富的实际案例和练习题,鼓励他们通过不断的实践来巩固和深化对统计学方法的理解与掌握。这种学以致用的方式将有助于读者在未来的职业生涯中更好地运用统计学知识来解决实际问题
  • 作者介绍

  • 目录

    第1章  数据的收集与抽样
      1.1  总体与样本
        1.1.1  数据
        1.1.2  抽样方法
      1.2  抽样方法在大数据时代的应用
      课后习题
    第2章  数据的整理与可视化
      2.1  数据的分类
      2.2  数据的整理
        2.2.1  定性数据的整理
        2.2.2  定量数据的整理
      2.3  描述性度量
        2.3.1  集中趋势的度量
        2.3.2  离散程度的度量
        2.3.3  分布形态的度量
        2.3.4  两个变量关系的描述
      2.4  数据的可视化
        2.4.1  定性数据的可视化
        2.4.2  定量数据的可视化
        2.4.3  变量关系的可视化
      课后习题41
    第3章  抽样分布
      3.1  统计量与抽样分布
      3.2  统计学中常用的几种重要分布
        3.2.1  正态分布
        3.2.2  χ2分布
        3.2.3  t分布
        3.2.4  F分布
      3.3  均值的抽样分布
        3.3.1  正态总体抽样
        3.3.2  非正态总体抽样与中心极限定理
      3.4  比例的抽样分布
      3.5  方差的抽样分布
      课后习题
    第4章  参数估计
      4.1  参数估计的基本原理
        4.1.1  估计量与估计值
        4.1.2  估计量的评价标准
      4.2  点估计与区间估计
        4.2.1  点估计
        4.2.2  区间估计
      4.3  单个总体参数的置信区间
        4.3.1  总体均值的置信区间
        4.3.2  总体比例的置信区间
        4.3.3  总体方差的置信区间
      4.4  两个总体参数的置信区间
        4.4.1  两个总体均值之差的置信区间
        4.4.2  两个总体比例之差的置信区间
        4.4.3  两个总体方差之比的置信区间
      4.5  样本量的确定

      课后习题
    第5章  假设检验
      5.1  假设检验的基本原理
      5.2  总体均值的检验
        5.2.1  单个总体均值的检验
        5.2.2  两个总体均值之差的检验
      5.3  总体比例的检验
        5.3.1  单个总体比例的检验
        5.3.2  两个总体比例之差的检验
      5.4  总体方差的检验
        5.4.1  单个总体方差的检验
        5.4.2  两个总体方差之比的检验
      课后习题
    第6章  方差分析
      6.1  方差分析引论
        6.1.1  方差分析的思想及基本概念
        6.1.2  方差分析的基本假定及检验
      6.2  单因子方差分析
        6.2.1  数据结构及问题表述
        6.2.2  方差分解原理及F检验
        6.2.3  多重比较
      6.3  双因子方差分析
        6.3.1  无交互作用的双因子方差分析
        6.3.2  有交互作用的双因子方差分析
      课后习题
    第7章  列联表分析
      7.1  列联表的独立性检验
      7.2  列联表的齐性检验
      7.3  相关性度量
      课后习题
    第8章  线性回归分析
      8.1  简单线性回归
        8.1.1  模型的建立
        8.1.2  最小二乘估计
        8.1.3  最小二乘估计的性质
        8.1.4  回归系数的统计推断
        8.1.5  置信与预测区间
      8.2  多元线性回归
        8.2.1  多元线性回归模型
        8.2.2  回归系数的统计推断
        8.2.3  置信与预测区间
      8.3  回归模型的评估
        8.3.1  回归方程的显著性检验
        8.3.2  决定系数
      8.4  残差分析
      8.5  变量选择
      课后习题
    第9章  逻辑回归
      9.1  二分类变量的逻辑回归模型
      9.2  回归系数的含义

      9.3  回归系数的估计以及统计推断
      9.4  拟合方程的评价
      课后习题
    第10章  时间序列
      10.1  时间序列的种类和编制方法
        10.1.1  时间序列的种类
        10.1.2  时间序列的编制方法
      10.2  时间序列的描述性统计
        10.2.1  图形展示
        10.2.2  数字描述
      10.3  时间序列的预测
      10.4  平稳时间序列预测
      10.5  非平稳时间序列预测
        10.5.1  时间序列的分解
        10.5.2  线性与非线性趋势的预测
        10.5.3  时间序列的分解与预测
      课后习题
    第11章  指数
      11.1  指数的概念和种类
        11.1.1  指数的概念
        11.1.2  指数的分类
        11.1.3  指数编制中的问题
      11.2  总指数编制方法
        11.2.1  简单指数
        11.2.2  加权指数
      11.3  指数体系
        11.3.1  总量指数体系
        11.3.2  平均数变动因素分解
      11.4  综合评价指数
      11.5  几种常见的指数
        11.5.1  居民消费价格指数
        11.5.2  股票价格指数
      课后习题
    第12章  案例分析
        12.1PM2.5  浓度时间序列分析及其季节效应剥离——以上海市某监测站点为例
        12.1.1  案例背景
        12.1.2  数据来源
        12.1.3  描述性分析
        12.1.4  时间序列分解
      12.2  基于逻辑回归的银行理财产品的潜在购买客户预测
        12.2.1  案例背景
        12.2.2  数据来源
        12.2.3  描述性分析
        12.2.4  逻辑回归模型建模与分析
        12.2.5  结语
      12.3  基于股票价格指数的统计指标测算和预测
        12.3.1  案例背景
        12.3.2  数据来源
        12.3.3  数据预处理
        12.3.4  自回归移动平均模型

        12.3.5  结语
      12.4  全社会用电量的影响因素分析与预测
        12.4.1  案例背景
        12.4.2  数据来源和变量说明
        12.4.3  描述性分析
        12.4.4  线性回归建模分析
        12.4.5  全社会用电量预测分析
    附录A  概率基础
      A.1  随机实验与随机事件
      A.2  随机事件的概率
      A.3  随机变量及其分布
        A.3.1  随机变量的概率分布
        A.3.2  随机变量的数字特征
      A.4  常见的概率分布
    附录B  R语言简介
      B.1  基本语法
      B.2  DataFrame类
      B.3  List类
      B.4  R函数
      B.5  控制语句和循环语句
      B.6  读入与输出数据
      B.7  几个常用的R软件包
        B.7.1  ggplot2
        B.7.2  rmarkdown
        B.7.3  shiny
    附录C  上海财经大学统计与管理学院大语言模型简介与应用
      C.1  大模型发展、现状与应用
        C.1.1  大模型的发展历程
        C.1.2  大模型的现状
        C.1.3  大模型的应用
      C.2  统计学大模型构建简述
        C.2.1  统计学大模型构建意义
        C.2.2  统计学大模型结果展示
    参考文献

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>