欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 代数几何(第2卷)(英文版)
      • 作者:(美)大卫·曼福德//(日)小田忠雄|责编:董心意//陈亮
      • 出版社:世图出版公司
      • ISBN:9787523230107
      • 出版日期:2026/01/01
      • 页数:504
    • 售价:35.2
  • 内容大纲

        全书共9章,系统介绍代数几何相关知识。首先定义了概型和层,涵盖Spec(R)、概型的积、拟凝聚层等内容,并给出层论附录与习题。接着探索概型世界,阐述经典簇作为概型的性质、闭子概型等。对ProjR进行初等全局研究,涉及可逆层、爆破等。之后探讨基域和基环,分析伽罗瓦理论与概型等。还区分了奇异与非奇异情况,介绍正则性、卡勒微分等。讲解群概型及其应用,以及凝聚层的上同调,包含基本Cech上同调、上同调计算方法等。最后给出上同调应用及两个深入结果,如黎曼-罗赫定理、森重文的有理曲线存在定理等,书末附有参考文献和索引,便于读者深入学习。
  • 作者介绍

  • 目录

    Preface
    1  Schemes and sheaves: definitions
      1.1  Spec(R)
      1.2  M
      1.3  Schemes
      1.4  Products
      1.5  Quasi-coherent sheaves
      1.6  The functor of points
      1.7  Relativization
      1.8  Defining schemes as functors
      Appendix: Theory of sheaves
      Exercises
    2  Exploring the world of schemes
      2.1  Classical varieties as schemes
      2.2  The properties: reduced, irreducible and finite type
      2.3  Closed subschemes and primary decompositions
      2.4  Separated schemes
      2.5  Proj R
      2.6  Proper morphisms
      Exercises
    3  Elementary global study of Proj R
      3.1  Invertible sheaves and twists
      3.2  The functor of Proj R
      3.3  Blowups
      3.4  Quasi-coherent sheaves on Proj R
      3.5  Ample invertible sheaves
      3.6  Invertible sheaves via cocycles, divisors, line bundles
      Exercises
    4  Ground fields and base rings
      4.1  Kronecker's big picture
      4.2  Galois theory and schemes
      4.3  The Frobenius morphism
      4.4  Flatness and specialization
      4.5  Dimension of fibres of a morphism
      4.6  Hensel's lemma
      Exercises
    5  Singular vs. non-singular
      5.1  Regularity
      5.2  Kahler differential
      5.3  Smooth morphisms
      5.4  Criteria for smoothness
      5.5  Normality
      5.6  Zariski's Main Theorem
      5.7  Multiplicities following Well
      Exercises
    6  Group schemes and applications
      6.1  Group schemes
      6.2  Lang's theorems over finite fields
      Exercises
    7  The cohomology of coherent sheaves

      7.1  Basic Cech cohomology
      7.2  The case of schemes: Serre's theorem
      7.3  Higher direct images and Leray's spectral sequence
      7.4  Computing cohomology (1): Push f" into a huge acyclic sheaf
      7.5  Computing cohomology (2): Directly via the Cech complex .
      7.6  Computing cohomology (3): Generate Jr by "known" sheaves
      7.7  Computing cohomology (4): Push 5r into a coherent acyclic sheaf
      7.8  Serre's criterion for ampleness
      7.9  Functorial properties of ampleness
      7.10  The Euler characteristic
      7.11  Intersection numbers
      7.12  The criterion of Nakai-Moishezon
      7.13  Seshadri constants
      Exercises
    8  Applications of cohomology
      8.1  The Riemann-Roch theorem
      Appendix: Residues of differentials on curves
      8.2  Comparison of algebraic with analytic cohomology
      8.3  de Rham cohomology
      8.4  Characteristic p phenomena
      8.5  Deformation theory
      Exercises
    9  Two deeper results
      9.1  Mori's existence theorem of rational curves .
      9.2  Belyi's three-point theorem
    References
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>