-
内容大纲
全书共9章,系统介绍代数几何相关知识。首先定义了概型和层,涵盖Spec(R)、概型的积、拟凝聚层等内容,并给出层论附录与习题。接着探索概型世界,阐述经典簇作为概型的性质、闭子概型等。对ProjR进行初等全局研究,涉及可逆层、爆破等。之后探讨基域和基环,分析伽罗瓦理论与概型等。还区分了奇异与非奇异情况,介绍正则性、卡勒微分等。讲解群概型及其应用,以及凝聚层的上同调,包含基本Cech上同调、上同调计算方法等。最后给出上同调应用及两个深入结果,如黎曼-罗赫定理、森重文的有理曲线存在定理等,书末附有参考文献和索引,便于读者深入学习。 -
作者介绍
-
目录
Preface
1 Schemes and sheaves: definitions
1.1 Spec(R)
1.2 M
1.3 Schemes
1.4 Products
1.5 Quasi-coherent sheaves
1.6 The functor of points
1.7 Relativization
1.8 Defining schemes as functors
Appendix: Theory of sheaves
Exercises
2 Exploring the world of schemes
2.1 Classical varieties as schemes
2.2 The properties: reduced, irreducible and finite type
2.3 Closed subschemes and primary decompositions
2.4 Separated schemes
2.5 Proj R
2.6 Proper morphisms
Exercises
3 Elementary global study of Proj R
3.1 Invertible sheaves and twists
3.2 The functor of Proj R
3.3 Blowups
3.4 Quasi-coherent sheaves on Proj R
3.5 Ample invertible sheaves
3.6 Invertible sheaves via cocycles, divisors, line bundles
Exercises
4 Ground fields and base rings
4.1 Kronecker's big picture
4.2 Galois theory and schemes
4.3 The Frobenius morphism
4.4 Flatness and specialization
4.5 Dimension of fibres of a morphism
4.6 Hensel's lemma
Exercises
5 Singular vs. non-singular
5.1 Regularity
5.2 Kahler differential
5.3 Smooth morphisms
5.4 Criteria for smoothness
5.5 Normality
5.6 Zariski's Main Theorem
5.7 Multiplicities following Well
Exercises
6 Group schemes and applications
6.1 Group schemes
6.2 Lang's theorems over finite fields
Exercises
7 The cohomology of coherent sheaves
7.1 Basic Cech cohomology
7.2 The case of schemes: Serre's theorem
7.3 Higher direct images and Leray's spectral sequence
7.4 Computing cohomology (1): Push f" into a huge acyclic sheaf
7.5 Computing cohomology (2): Directly via the Cech complex .
7.6 Computing cohomology (3): Generate Jr by "known" sheaves
7.7 Computing cohomology (4): Push 5r into a coherent acyclic sheaf
7.8 Serre's criterion for ampleness
7.9 Functorial properties of ampleness
7.10 The Euler characteristic
7.11 Intersection numbers
7.12 The criterion of Nakai-Moishezon
7.13 Seshadri constants
Exercises
8 Applications of cohomology
8.1 The Riemann-Roch theorem
Appendix: Residues of differentials on curves
8.2 Comparison of algebraic with analytic cohomology
8.3 de Rham cohomology
8.4 Characteristic p phenomena
8.5 Deformation theory
Exercises
9 Two deeper results
9.1 Mori's existence theorem of rational curves .
9.2 Belyi's three-point theorem
References
Index
同类热销排行榜
- 目送/人生三书
-
21世纪的《背影》 + 感人至深的“生死笔记”+ 龙应台亲手摄影 + 跨三代共读的人生之书!
华人世界率性犀利的一枝笔,龙应台独家...
- 顾城的诗(金版)(精)/蓝星诗库
- 人类群星闪耀时(插图本)/译林名著精选
- 牛津高阶英汉双解词典(附光盘第8版)(精)
- 文化苦旅(新版)
- 摆渡人
- 解忧杂货店(精)
- 骆驼祥子
- 曾国藩(又笨又慢平天下)
- 查令十字街84号(珍藏版)(精)
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
